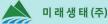
2025 한국환경생물학회 정기학술대회

기후-오염-종 다양성의 삼중위기와 환경생물학의 대응

2025년 10월 22일(수)~24일(금) 스위트호텔 남원



2025 한국환경생물학회 정기학술대회

기후-오염-종 다양성의 삼중위기와 환경생물학의 대응

2025년 10월 22일(수)~24일(금) 스위트호텔 남원

QR코드 스캔 후, 초록집 다운로드 가능합니다.

2025년 한국환경생물학회 정기학술대회 초록집

- **주최** 한국환경생물학회
- 후 원 국립낙동강생물자원관, 한국해양과학기술원, 상지대학교 RISE사업단, 겐트대학교 코리아, 국립해양생물자원관, ㈜브니엘바이오, 한국환경산업기술원, 한양대학교, 동문이엔티㈜, ㈜인트인, 미래생태㈜

Opening remarks

존경하는 한국환경생물학회 회원 여러분, 그리고 내외 귀빈 여러분,

오늘 이 자리에 함께해 주신 모든 분들께 깊이 감사드립니다. 아름다운 전북 남원 스위트호텔에서 열리는 2025년도 한국환경 생물학회 정기학술대회에 여러분과 함께하게 되어 매우 뜻깊게 생각합니다.

올해 학술대회의 주제는 "기후-오염-종 다양성의 삼중위기와 환경생물학의 대응"입니다. 기후변화, 환경오염, 생물다양성 감 소라는 전 지구적 과제 앞에서 환경생물학은 학문적 성찰과 함 께 실천적 해법을 제시해야 하는 소명을 안고 있습니다. 이번 학 술대회가 이러한 시대적 요구에 부응하여, 우리 공동체의 지혜를 모으는 뜻깊은 시간이 되기를 기대합니다.

특히 개회식에는 겐트대학교 코리아 한태준 총장님께서 축사를 통해 귀한 말씀을 전해 주십니다. 학회와 회원들을 격려해 주시는 총장님의 따뜻한 성원에 깊이 감사드립니다.

이번 학술대회는 사흘간 다채롭고 알찬 프로그램으로 준비되어 있습니다. 부산대학교 전태수 교수님의 기조강연을 시작으로, 서울대학교 김재근 교수님의 기조강연, 제4회 구양환경생물학상 시상과 수상 강연, 신진연구자 및 학생 구두발표와 학생 교류회가 이어지며, 마지막 날에는 상지 대학교 이황구 교수님의 특별강연을 통해 광릉숲 어류 군집과 참갈겨니 복원 연구 성과를 함께 나누게 됩니다.

또한 이번 대회에서는 구양환경생물학상 수상자의 강연을 비롯하여 다양한 특별세션, 학생·신 진연구자·일반 구두발표, 그리고 포스터 발표와 전시가 진행되며, 차기회장 선출을 위한 평의원회 및 정기총회도 열려 학회의 미래를 함께 준비하는 뜻깊은 시간이 될 것입니다.

존경하는 회원 여러분, 우리 학회는 언제나 여러분의 열정과 성실한 활동 덕분에 발전해 왔습니다. 앞으로도 한국환경생물학회가 학문적 깊이를 더하고 사회적 책임을 다하며, 후학들에게 든든한 버팀목이 될 수 있도록 지속적인 관심과 성원을 부탁드립니다. 지난 8월 우리 학회가 주관하여성공적으로 마무리한 2025 한국생물과학협회 학술대회는 임원진 여러분의 헌신과 노력 덕분이었습니다. 이 자리에서 다시 한 번 감사의 말씀을 드립니다.

끝으로 이번 학술대회를 위해 정성껏 준비해 주신 임원진 여러분, 후원해 주신 기업과 기관, 발표를 맡아주신 강연자와 연구자, 그리고 적극적으로 참여해 주신 모든 회원 여러분께 진심으로 감사드립니다. 남원의 아름다운 가을 정취 속에서 이번 학술대회가 학문적 성취와 더불어 따뜻한 교류의 추억으로 남기를 기원합니다.

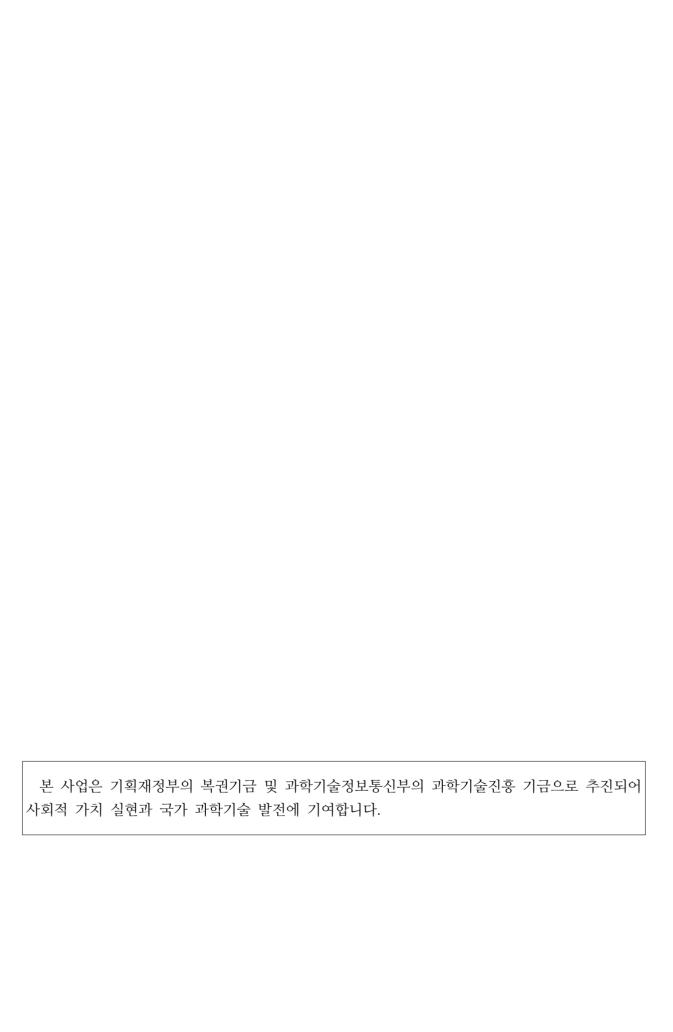
감사합니다.

2025년 10월

한국환경생물학회 회장 김 백호

2025년도 한국환경생물학회 정기학술대회 프로그램

일 자 2025년 10월 22일(수) ~ 10월 24일(금)


장 소 스위트호텔 남원

주 제 기후-오염-종 다양성의 삼중위기와 환경생물학의 대응

10월 22일(수)					
시간	I	<u>로</u> 로그램			
12:00~	등록 및 :	포스터 게시			
12:30~14:30	학생 구두발표1 (그랜드볼룸)	학생 구두발표2 (스위트홀)			
14:30~14:40	Coffe	e Break			
	개회식 (.	그랜드볼룸)			
14:40~14:55	사회: 이강현 총독	무이사((주)마린액트)			
14.40 14.55	개회사: 김백호	회장(한양대학교)			
	축사: 한태준 총장(겐트대학교 코리아)				
14:55~15:00	축사: 한태준 총장(겐트대학교 코리아) 전체사진 촬영 (그랜드볼룸) 전체 전체 (그랜드볼로)				
	기조 강연1 (그랜드볼룸)				
15:00~15:30	전태수 교수(부산대학교)				
13.00 13.30	"Ecological modeling and informatics applied to benthic macroinvertebrate				
	communities for biodiversity monitoring"				
15:30~15:40	Coffe	"Ecological modeling and informatics applied to benthic macroinvertebrate communities for biodiversity monitoring" Coffee Break			
	특별세션1 (그랜드볼룸)	특별세션2 (스위트홀)			
15:40~17:40	"녹조 제거제 발굴·등록·살포 시스템	"생물자원을 이용한 지속가능한			
	및 테스트베드 적용" 바이오신소재 탐색 및 활용"				
17:40~17:50	Coffee Break				
17:50~18:20	평의원회 (차기회장 선임) (그랜드볼룸)				

	10월 23	3일(목)			
08:00~	등록 5	등록 및 포스터 게시			
09:00~10:30	일반 구두발표 (그랜드볼룸)	신진연구자 구두발표 (스위트홀)			
10:30~10:40	Со	ffee Break			
	기조 강	연2 (그랜드볼룸)			
10:40~11:10	김재근 .	교수(서울대학교)			
	"기후변화 시[대의 생물다양성 보존"			
11:10~11:30	제4회 구양환경생물학상	시상식 및 사진촬영 (그랜드볼룸)			
	특별강연1 / 제4회 구양	환경생물학상 수상자 (그랜드볼룸)			
11:30~12:00	최종순 (한국	·기초과학지원연구원)	Poster		
	"최전선의 환경생물학: 생물재난을 위한 진단 및 대응 기술"				
12:00~13:30	Lunch (중석	닉 제공) (라 테라스)	& Exhibition		
13:30~15:30	특별세션3 (그랜드볼룸) "야생생물소재은행의 역할과 활용 가치 탐색"	"야생생물소재은행의 역할과 활용 등병기 환경 오염문질의 유해영향 평가"			
15:30~15:50	Со	ffee Break			
	특별세션 5 (그랜드 볼 룸)	특별세션 6 (스위트홀)			
15:50~17:50	7:50 "수생태계 건강성 확보를 위한 "해양플라스틱 거동 및 생태계 미치는				
	환경생물학적 관리방안" 영향평가"				
17:50~18:30	Student Mixer / 포스터 발표 (2층 로비)				
18:30~18:50	정기총회 / 차기회장 선출 (스위트홀)				
18:50~	시상식 및 간친회 (만찬 제공) (그랜드볼룸)				

	10월 24일	(금)	
08:30~	등록		
09:00~11:00	특별세션7 (그랜드볼룸) "첨단산업•탄소저감•기후변화 대응을 위한 생태평가"	특별세션8 (스위트홀) "생태정보학과 다중생태계 빅데이터-육상과 수생태 사례"	Poster
11:00~11:20	Coffee Break		
11:20~11:50	특별강연2 (그랜드볼룸) 2025 과총우수논문상 수상자 이황구 교수(상지대학교) "광릉숲 어류 군집 및 참갈겨니(Zacco koreanus) 복원에 관한 연구"		
11:50~12:30	시상식 및 폐회식 (경	품이벤트) (그랜드볼룸)	

Contents

_			$\boldsymbol{\neg}$
	エハ	$\overline{}$	2

50	he	d١	مار

	기조강연 1 1
	Ecological modeling and informatics applied to benthic macroinvertebrate communities for biodiversity monitoring
	기조강연 2 5
	나 기후변화 시대의 생물다양성 보존
	특별강연 1 9
	└→ 최전선의 환경생물학: 생물재난을 위한 진단 및 대응 기술
	특별강연 2 ······· 13
	나 광릉숲 어류 군집 및 참갈겨니(Zacco koreanus) 복원에 관한 연구
	특별세션 1 ······ 19
	└ 녹조 제거제 발굴・등록・살포 시스템 및 테스트베드 적용
	특별세션 2 ······· 25
	└→ 생물자원을 이용한 지속가능한 바이오신소재 탐색 및 활용
	특별세션 3 ······· 31
_	나 야생생물소재은행의 역할과 활용 가치 탐색
	특별세션 4 ······· 41
	[→] 해양 환경오염물질의 유해영향 평가
	특별세션 5 ······ 49
	└→ 수생태계 건강성 확보를 위한 환경생물학적 관리방안

특별세션 6 ······ 57
└→ 해양플라스틱 거동 및 생태계 미치는 영향평가
특별세션 7 ······ 63
└→ 첨단산업•탄소저감•기후변화 대응을 위한 생태평가
특별세션 8 ······ 71
└→ 생태정보학과 다중생태계 빅데이터-육상과 수생태 사례
구두 발표 81
나 일반 구두 발표 / 83
└ 신진연구자 구두발표 / 89
└ 학생 구두 발표 1 / 97
나 학생 구두 발표 2 / 109
포스터 발표 ······· 121
나 1. 유해생물 / 129
└ 3. 동물생태·분류·유전 / 132
└ 4. 식물생태·분류·유전 / 138
└→ 5. 미생물생태·분류·유전 / 145
나 6. 생물다양성 및 생물모니터링 / 150
^나 7. 생태독성 및 환경호르몬 / 171
나 9. 기타 / 181

기조강연 1 (Plenary Lecture 1)

일 시: 2025년 10월 22일(수) 15:00 - 15:30

장 소: 그랜드볼룸 (Grand Ballroom)

좌장: 안치용/한국생명공학연구원

15:00 - 15:30 PL-1

Ecological modeling and informatics applied to benthic macroinvertebrate communities for biodiversity monitoring Tae-Soo Chon (Pusan National University)

PL-1

Ecological modeling and informatics applied to benthic macroinvertebrate communities for biodiversity monitoring

Tae-Soo Chonpc1,2

¹Department of Biological Sciences (Prof. Emer.), Pusan National University ²Research and Development, Ecology and Future Research Institute

Aquatic communities are vital to keep living organisms' sustainability in ecosystems. Biodiversity monitoring is a complex phenomenon because numerous elements are interplayed in non-linear fashions under heterogenous environmental conditions. Computational methods in ecological modeling and informatics are introduced to deal with problems related to biodiversity monitoring in application to benthic macroinvertebrates in stream ecosystems. Data driven models with machine learning in ecological informatics are applied to reveal associative and causative relationships between environmental factors and species in multivariable data. Community structure was analyzed by species abundance distribution in ecological modeling to quantitatively present the community states responding to disturbing effects. Spatial approaches under the concepts of metacommunity, diversity index measurements and boundarization are adopted to provide efficient means of management tactics in biodiversity monitoring. In addition simulations are conducted based on mechanism based models to present progresses in individual-species relationships in stressful aquatic ecosystems.

Corresponding author E-mail: tschon.chon@gmail.com

기조강연 2 (Plenary Lecture 2)

일 시: 2025년 10월 23일(목) 10:40 - 11:10

장 소: 그랜드볼룸 (Grand Ballroom)

좌장: 홍선희/한경국립대학교

10:40 - 11:10PL-2기후변화 시대의 생물다양성 보존
김재근 (서울대학교)

PL-2

기후변화 시대의 생물다양성 보존

김재근^{pc}

서울대학교 생물교육과

생물의 분포와 기능에 기본적인 역할을 하는 기후가 인간의 활동으로 인해 변해왔다. 기후변 화를 억제하려는 노력이 지속되지만, 최근 10년 동안 기후는 더 많이 변해왔다. 지난 100년 동 안 우리나라의 평균 기온 상승은 약 1.8℃로 전 세계 평균 1.4℃보다 훨씬 더 많이 변해왔다. 특히 최근 50여 년 동안 우리나라 바다 표면 온도는 1.36℃가 상승하여 세계 평균 0.53℃의 2.6 배나 빠르게 상승하였다. 연강수량의 변동성은 크지만 과거 100년 동안 증가 추세이며, 특히 여 름철 강수량은 10년에 11.6 mm 많아졌다. 더 큰 문제는 여름철 극한 기후 현상이 증가하고, 강 한 강수가 증가하였다는 것이다. 기후변화를 줄이는 방법으로는 화석연료의 사용 감소와 자연생 태계 복원 등이 제시되고 있으며, 이는 인간에게 영향을 직접 주는 감염병의 감소를 줄이기 위 한 복합적인 해결책으로도 제안된다. 우리나라를 대상으로 생물다양성이나 기후에 대한 압력이 분석되지는 않았으나, 큰 영향을 받는 것은 확실하다. 그런데도 생물다양성 연구가 잘 진척되지 않는 이유는 생물다양성에 대한 인식 부족, 재정 협력 부족, 정치적 관심 부족, 관료주의 등과 같은 전 세계적인 문제를 우리도 같게 가지고 있기 때문이다. 연구자인 우리에게는 불충분한 전 문성이 문제가 될 수 있다. 여기에서는 기후변화의 큰 두 요소인 기온과 강수에 대해 동식물이 어떤 반응을 보이는지를 설명할 것이다. 동물은 종에 따라 이동을 통해 기후변화에 대응한다. 종 사이의 관계는 기후변화에 더욱 민감하다. 쥐방울덩굴의 성장은 이산화탄소와 강수량 증가에 억 제되고, 이를 먹는 꼬리명주나비도 성장이 억제된다. 또한 쥐방울덩굴은 연생에 따라 내부 생리 적인 특징을 달리한다. 가장 크게 영향을 받는 식물은 분포의 가장자리에 서식하는 종이다. 이들 은 멸종의 위협을 가장 크게 받아 보전 노력이 필요하다. 조름나물, 독미나리, 흑삼릉의 생활사 적 특성 연구를 통해 개발한 보전 방법을 제시한다. 강수량의 감소에 의한 영향은 수서생물의 서식지 소실과 식물의 1차 생산량 저하를 통해 증폭될 수 있다. 이러한 변화에 대해 우리는 보 호, 관리, 복원이라는 3단계 대응을 수행할 필요가 있다. 문제는 이러한 대응을 위해 필요한 연 구 결과가 부족하다는 것이다. 생물다양성 보전을 위해서는 관찰, 실험실 실험, 야외 실험 등을 통해 문제의 원인을 파악하고 대응할 방법을 찾는 것이 필요하다.

교신저자 E-mail: jaegkim@snu.ac.kr

특별강연 1 (Special Lecture 1) (제4회 구양환경생물학상 수상자 발표)

일 시: 2025년 10월 23일(목) 11:30 - 12:00

장 소: 그랜드볼룸 (Grand Ballroom)

사회: 오희목/한국생명공학연구원

11:30 - 12:00 SL-1 최전선의 환경생물학: 생물재난을 위한 진단 및 대응 기술

최종순 (한국기초과학지원연구원)

SL-1

최전선의 환경생물학: 생물재난을 위한 진단 및 대응 기술

최종순pc1,2

¹한국기초과학지원연구원 디지털오믹스연구부 ²충남대학교 분석과학기술대학원

2011년 3월 11일 발생한 동일본 대지진은 국가 차원의 재난 대응 체계 필요성을 강하게 일깨웠다. 이를 계기로 한국기초과학지원연구원(KBSI)은 인간 활동으로 발생하는 생물재난에 대한 예찰, 원인 규명, 대응 기술 개발을 포함하는 국가 연구개발 사업의 필요성을 제기하였고, 2012년 재난과학연구단을 출범시켜 2024년까지 재난분석과학 연구사업을 총괄 수행하였다. 연구단은 지난 13년간 녹조, 식중독 바이러스, 항생제 내성 슈퍼박테리아, 코로나바이러스, 광우병 등다양한 생물재난 사례를 대상으로 분석·진단 기술과 해결책을 개발해 수요기관에 보급하였다. 대표 성과로 겨울철 노로바이러스 조기 진단법과 손 소독제를 개발하여 2017년 국가연구개발성과 100선에 선정되었으며, 이 기술은 2018년 평창 동계올림픽 방역에도 활용되었다. 코로나19 팬데믹 기간에는 타액 기반 분자진단법을 개발해 대규모 선별검사에 기여하였고, 3차원 종이칩 기반 슈퍼박테리아 진단법으로 2022년 두 번째 국가연구개발 성과 100선에 올랐다. 또한 p21 단백질 바이오마커를 종이칩 형태로 개량하여 소의 월령을 신속 판별하고 광우병 조기 대응 체계를 확립하였다. 이러한 일련의 성과는 환경생물학적 접근을 기반으로 국가의 생물재난대응 역량을 강화하였으며, 한국환경생물학회의 학문적 발전과 사회적 문제 해결에 중요한 기억를 하였다. 나아가 본 연구 경험은 생물재난을 단순한 위기가 아닌 인류와 자연이 공존할 해법을 모색하는 기회로 바라보아야 함을 보여준다.

교신저자 E-mail: jschoi@kbsi.re.kr

특별강연 2 (Special Lecture 2) <u>(과총 과학기술</u>우수논문상 수상자 발표)

일 시: 10월 24일(금) 11:20 - 11:50 장 소: 그랜드볼룸 (Grand Ballroom)

사회: 홍선희/한경국립대학교

생릉숲 어류 군집 및 참갈겨니(Zacco koreanus) 복원에 관한 11:20 - 11:50 SL-2 연구 이황구 (상지대학교)

SL-2

광릉숲 어류 군집 및 참갈겨니(Zacco koreanus) 복원에 관한 연구

왕주현, 고민섭, 백원석, 권재현, 이황구 다

상지대학교 생명과학과

본 연구는 과거 문헌 비교를 통한 광릉숲의 어류상 변화를 시공간적으로 분석하고, 봉선사천 에 재도입된 참갈겨니(Zacco koreanus) 개체군의 서식 안정성과 생물학적 특성을 평가하여 복 원 효과를 검증하고자 수행되었다. 과거 문헌자료(2007, 2011, 2015, 2021)와 2025년 조사결과 총 11과 28종이 출현하였으며, 법정보호종은 둑중개 1종이 확인되었다. 내성도 길드 분석 결과 전반적으로 오염에 내성이 강한 내성종 보다는 오염에 민감하게 반응하는 민감종과 중간종의 개 체수 비율이 높게 나타났다. 복원된 참갈겨니 개체군의 길이-무게 상관관계 분석 결과, 봉선사천 개체군의 회귀계수 b 값은 2015년, 2021년, 2025년 모두 3.0 이상을 유지하였고, 비만도 지수 (K)는 양의 기울기 값을 나타내어 참갈겨니 개체군이 길이에 비례하여 체중이 증가하는 안정적 인 섭식이 이루어지고 있는 것으로 분석되었다. 전장빈도분포 분석 결과, 2015년에는 당년생 개 체 비중이 높았고, 2021년에는 성숙 개체 비율이 증가하였으며, 2025년에는 일반적인 전장빈도 분포 양상을 보였다. 이는 재도입 개체군이 안정화 단계에 있는 것을 의미하며, 안정적인 생활사 가 유지되고 있음을 시사한다. 생식소중량지수(GSI) 분석 결과, 암컷 개체군은 모든 연도에서 재도입 개체군의 중앙값(median)이 가장 높았고, 수컷 또한 비교적 높은 중앙값을 보여 원 개체 군에 비해 번식 능력에 많은 에너지를 사용하는 것으로 확인되었다. 경쟁종인 피라미와의 상대 적인 비율 변화에서는 참갈겨니 개체군이 재도입 이후 개체수 비율이 지속적으로 증가하는 반면 피라미 개체군의 비율은 감소하는 경향성을 보였다. 따라서 현재 봉선사천에 재도입된 참갈겨니 개체군은 안정적인 성장과 높은 생식 능력을 유지하고 있으며, 경쟁 관계에서도 우위를 점하고 있어 장기적인 관점에서 보았을 때 봉선사천 내에 성공적인 정착이 이루어진 것으로 생각된다. 미토콘드리아 DNA COI 유전자(597 bp)를 이용하여 수계별 유전적 구조를 파악한 결과, 총 13 개 단상형(haplotype)이 확인되었다. 수계별 유전자다양성(haplotype diversity; h) 분석결과, 봉 선사천(0.855±0.034), 조종천(0.743±0.049), 수동천(0.736±0.054)으로 나타났으며, 집단 간 유전 적 분화도(FST)는 재도입 개체군인 봉선사천과 조종천 및 수동천에서 각각 0.089, 0.140으로 나 타났으며, 원 개체군인 조종천과 수동천은 0.126으로 분석되었다. 따라서 봉선사천에 서식하는 참갈겨니 개체군은 상대적으로 원 개체군과 비교했을 때, 유전적 다양성이 높으며, 원 개체군 중 조종천 개체군과 유전적으로 가까운 집단임을 확인하였다. 본 연구 결과로 향후 어류 복원 사업 효과성 평가 및 장기적인 서식지 관리 방안 수립에 대한 기초자료로 활용될 것으로 기대된다.

교신저자 E-mail: morningdew@sangji.ac.kr

특 별 세 션

특별세션 1 (Special Session 1)

녹조 제거제 발굴ㆍ등록ㆍ살포 시스템 및 테스트베드 적용

일 시: 2025년 10월 22일(수) 15:40 - 17:40

장 소: 그랜드볼룸 (Grand Ballroom)

좌장: 한명수/한양대학교

15:40 - 16:00	S1-1	Platform research on selective control of harmful cyanobacteria using indigenous biological resources EonSeon Jin (Hanyang University)
16:00 - 16:20	S1-2	Screening of algicidal bacteria and candidate compounds from Korean microorganism resources Zhun Li (Korea Research Institute of Bioscience and Biotechnology)
16:20 - 16:40	S1-3	녹조 제거 물질 살포용 수상드론 시스템 김창봉 (지오소나(주))
16:40 - 17:00	S1-4	조류제거물질 관리제도 소개 및 개선방안 모색 강윤호 (국립환경과학원)
17:00 - 17:40	패널토론	토론 및 전문가 의견 수렴 패널위원: 송덕종 (한국환경산업기술원) 박준우 (국가독성과학연구소) 공동수 (경기대학교) 정태용 (한국외국어대학교)

Platform research on selective control of harmful cyanobacteria using indigenous biological resources

EonSeon Jinpc

Department of Environmental Science, Hanyang University, Seoul, Korea

Harmful cyanobacterial blooms have emerged as a critical ecological and public health concern in freshwater systems, causing water quality deterioration, toxin release, and risks to drinking water supplies. Conventional chemical algicides remain limited due to concerns about secondary pollution, underscoring the urgent need for eco-friendly alternatives. Harnessing indigenous biological resources, particularly bacteria with allelopathic potential, offers a promising strategy to establish a sustainable platform for the selective control of harmful cyanobacteria. In this study, we developed a platform research framework by isolating and characterizing 11 algicidal bacterial strains from freshwater environments in Korea. Phylogenetic analysis based on 16S rRNA sequencing revealed seven strains of *Bacillus badius*, three strains of *Micrococcus* sp., and one strain of Dermacoccus sp. Evaluation of culture filtrates demonstrated concentrationdependent and species-specific inhibitory effects, with strong activity against Microcystis aeruginosa but minimal or even stimulatory responses in Chlorella sorokiniana. Heatmap analysis further confirmed selective algicidal activity rather than broad-spectrum toxicity. To elucidate underlying mechanisms, cell lysate experiments indicated that intracellular metabolites were key contributors to algicidal effects. Lysates from Micrococcus sp. significantly reduced the maximum quantum yield of photosystem II (Fv/Fm) and disrupted electron transport rates (ETR) in M. aeruginosa within 12-48 h, leading to impaired photosynthetic efficiency. In contrast, C. sorokiniana remained largely unaffected, highlighting strain-specific susceptibility. These results suggest that algicidal bacteria act through allelopathic metabolites that interfere with photosynthesis and induce oxidative stress. This study will highlight the potential of indigenous bacterial resources as a foundation for developing a platform to selectively control harmful cyanobacterial blooms. By utilizing natural allelopathic interactions, the platform provides a sustainable and eco-friendly alternative to chemical algicides.

Corresponding author E-mail: esjin@hanyang.ac.kr

Screening of algicidal bacteria and candidate compounds from Korean microorganism resources

Zhun Li^{pc}, Hyun Sun Baek, and Xu-Dong Lian

Korean Collection for Type Cultures (KCTC)/Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea

Algicidal bacteria offer a promising and environmentally sustainable approach for mitigating harmful algal blooms (HABs) in aquatic ecosystems. In this study, bacterial strains were isolated from freshwater and soil samples collected across Korea and evaluated for algicidal activity using both environmental isolates and culture collection strains. Primary and secondary screening identified a taxonomically diverse set of bacteria, with *Bacillus* and *Pseudomonas* species exhibiting particularly potent inhibitory effects against target algal species. Algicidal activity was assessed through direct co-culture, application of cell-free supernatants, and treatment with organic solvent extracts. The majority of active strains exerted their effects via secretion of extracellular metabolites. In parallel, ten candidate small molecules (Compounds 1-10) were selected based on genome- and metabolome-guided screening. These compounds, primarily quinone-derived redox scaffolds, were chosen for their light-dependent capacity to generate reactive oxygen species (ROS). Dose-response assays against representative cyanobacteria demonstrated both broad-spectrum and species-specific algicidal activity. Mechanistic analyses revealed reduced photosynthetic efficiency, loss of membrane integrity, and elevated intracellular ROS levels in algal cells following treatment. Future work will focus on mesoscale ecosystem validation and comprehensive ecological risk assessments to evaluate the feasibility and safety of field-level application.

Corresponding author E-mail: lizhun@kribb.re.kr

녹조 제거 물질 살포용 수상드론 시스템

김창봉

지오소나(주) 자율운항무인선박연구소

본 연구에서는 하절기 수체에서 빈번히 발생하는 녹조(藻類) 문제를 효과적으로 대응하기 위하여, 녹조 제거 물질을 자동으로 살포할 수 있는 수상드론 시스템을 제안하였다. 기존의 녹조 대응은 인력 및 선박 투입에 따른 공간적·시간적 한계가 있었으나, 본 시스템은 무인 수상드론 기반 플랫폼을 활용함으로써 효율성과 신속성을 동시에 확보하였다. 개발된 수상드론은 탄소섬유강화플라스틱(Carbon Fiber Reinforced Plastic, CFRP) 기반 경량 선체를 적용하였으며, 듀얼 스러스터추진체와 위치 유지 제어 알고리즘을 통해 정밀한 운항이 가능하다. 또한, 살포 장치(Dispenser Unit)는 자동항법 시스템과 연동되어 지정된 구역에 일정 농도로 약품을 균일하게 분사할 수 있도록 설계되었다. 아울러 본 시스템에는 자동 채수 장치가 탑재되어 녹조 제거 전후의 수질을 정밀하게 분석할 수 있다. 채수 장치는 1회 운용 시 최대 4리터 시료 채취가 가능하며, 온도, 탁도, 용존산소, 전기전도도, 클로로필-a 등 주요 수질 인자와 연계 분석을 지원한다. 이를 통해단순한 약품 살포를 넘어 수질 개선 효과 검증 및 생태계 관리 데이터 확보가 가능하다. 본 연구는녹조 발생 시 효율적인 대응 방안을 제시할 뿐만 아니라, 향후 수질 모니터링·생태계 보전·재난대응 분야로의 응용 가능성을 보여준다. 본 시스템은 환경 관리 기관의 현장 적용에 기초 자료를 제공할 것으로 기대된다.

교신저자 E-mail: ceo@geosonar.co.kr

조류제거물질 관리제도 소개 및 개선방안 모색

강윤호^{pc}

국립환경과학원 한강통합물환경센터

기후변화로 인한 지속적 기온 증가는 녹조발생을 가속화하고 있다. 이에 따른 녹조피해를 저 감하기 위해 많은 비용이 소요되고 있다. 현재 녹조를 관리하기 위한 다양한 방법들이 시도 중 에 있고, 그 중에서 살조제, 응집제로 대표되는 조류제거물질의 사용은 단기적으로 가시적 녹조 제거가 가능해 시급히 녹조피해를 예방하기 위한 수단으로 꾸준히 활용되고 있다. 그러나 가습 기살균제 사건(2011년)을 계기로 생물·화학제재 사용에 관한 엄격한 관리 조치가 요구되었다. 이에 환경부에서는 "조류제거시설 설치운영 및 살포용 조류제거물질 사용지침"(이하 사용지침) 을 제정(2012년 6월)하게 된다. 해당 사용지침은 무분별한 조류제거물질 사용을 지양(2차 환경 오염 방지)하고 최소 사용으로 녹조피해를 빠른 시간 내 저감(응급 방제조치)하기 위한 취지로 운영하고 있다. 사용지침은 크게 조류제거물질의 등록과 사용에 관한 방법과 절차를 관장한다. 등록 절차를 살펴보면, 사용기관(공공수역관리자 또는 수면관리자)은 총괄기관(환경청)에 조류제 거물질 등록을 신청하고, 총괄기관은 기술적 검토를 국립환경과학원(이하 과학원)에 요청하게 된다. 총괄기관은 과학원의 기술검토결과와 여러 제반사항을 함께 검토하여 최종적으로 조류제 거물질 등록 여부를 결정하게 된다. 사용 절차의 경우에는 사용기관이 총괄기관에 사용을 요청 하고, 사용 승인하게 되면 조류제거물질로 등록된 물질을 사용해 녹조를 제거한 후 총괄기관에 결과를 보고하게 된다. 이때 총괄기관은 과학원에 사후영향평가를 의뢰하고 해당 결과와 함께 제반사항을 검토한 후 이상이 발견된 경우 해당 물질의 사용정지 또는 조류제거물질 승인취소를 할 수 있다. 현재까지 총 14종의 조류제거물질이 등록되어 있으며, 대부분 응집제와 살조제로 구분될 수 있다. 해당 물질들은 사용지침의 엄격한 기준에 따라 단기적 효과와 안전성을 입증받 았다. 주로 농업용 저수지, 호수, 연못 등 폐쇄수역에 사용되고 있으나, 간혹 하천 또는 강 등 열 린계에서도 사용되고 있다. 최근 국감에서 조류제거물질의 적극적 사용을 권고하고, 일부 시민 단체는 적극적 사용에 우려를 표명하는 등 이해관계가 충돌하고 있다. 그러나 반복적 사용에 따 른 장기적 안전성 검증 체계가 부재하여 정책적 결정에 한계가 있다. 또한 사용지침의 일부 불 명확한 내용과 조류제거물질 사용에 과도한 비용이 발생(특히 사후영향조사 비용)하는 등 추가 적인 문제점이 확인되었다. 따라서 현재 문제점 해결을 위해 기존 사용지침 내 평가항목을 개선 하고 신규 평가항목을 도입하며 제도개선을 위한 다양한 구상을 계획하고 있다. 이를 기반으로 우리는 향후 '28년까지 2차례 사용지침의 개정을 제안하여 완성도 높은 조류제거물질 관리제도 를 확립하기 위해 부단한 노력을 기울이고 있다.

교신저자 E-mail: korea1975@korea.kr

특별세션 2 (Special Session 2)

생물자원을 이용한 지속가능한 바이오신소재 탐색 및 활용

일 시: 2025년 10월 22일(수) 15:40 - 17:40

장 소: 스위트홀 (Suites Hall)

좌장: 이혁제/상지대학교

15:40 - 16:00	세션소개	상지대 강원 RISE 바이오헬스 사업단 소개 (K-MEDI 바이오헬스 G-Tech 브릿지 조성) 임성돈 (상지대학교)
16:00 - 16:20	S2-1	A long Journey for the investigation of clerodane diterpene biosynthesis in <i>Salvia divinorum</i> - en route to psychotropic salvinorin A biosynthesis 권문혁 (경상국립대학교)
16:20 - 16:40	S2-2	Mutagenesis-driven improvement of fatty acid profiles in the oleaginous yeast <i>Rhodotorula toruloides</i> Tae Sun Kang (Seoul Women's University)
16:40 - 17:00	S2-3	지속 가능한 바이오소재 개발을 위한 식물세포 캘러스 배양 기반 연구: EVs와 PDRN 중심으로 김승진 (㈜스페바이오)
17:00 - 17:20	S2-4	미세조류 유래 바이오 소재 개발 최윤이 (고려대학교)
17:40 - 17:40	Q&A	질의응답 및 종합토론

A long Journey for the investigation of clerodane diterpene biosynthesis in *Salvia divinorum* - en route to psychotropic salvinorin A biosynthesis

Moonhyuk Kwon^{pc}

Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, 52828, Republic of Korea

Salvia *divinorum* is a hallucinogenic plant native to Oaxaca in Mexico. The active ingredient for psychotropic effects in this plant is salvinorin A, a potent and highly selective κ-opioid receptor agonist. Salvinorin A is distinct from other well-known opioids, such as morphine and codeine, in that it is a non-nitrogenous diterpenoid with no affinity for μ-opioid receptor, the prime receptor of alkaloidal opioids. A terpene opioid that selectively targets a new opioid receptor (κ-opioid receptor) can be instrumental in developing alternative analgesics. Elucidation of the salvinorin A biosynthetic pathway can help bio-manufacture diverse semi-synthetic derivatives of salvinorin A. So far, we have identified three enzymes that sequentially catalyze Geranylgeranyl diphosphate to kolavenol, crotonolide G (clerodane backbone), and C18-oxidative crotonolide G using engineered yeast, omics, in vitro biochemical assay, and NMR analysis. Further metabolic pathway is under investigation, and the related genes will be developed as bio-parts for synthetic biological production.

Corresponding author E-mail: mkwon@gnu.ac.kr

Mutagenesis-driven improvement of fatty acid profiles in the oleaginous yeast *Rhodotorula toruloides*

Tae Sun Kang^{pc}

Department of Food Science and Technology, Seoul Women's University, Seoul, South Korea.

This study aimed to improve the fatty acid composition of the oleaginous yeast Rhodotorula toruloides by selecting spontaneous and chemically induced mutants. A spontaneous mutant with 1.3-fold higher glucose consumption and 1.2-fold higher biomass than the wild type was obtained and used for chemical mutagenesis. Chemical mutagenesis was induced by treatment with 1 mg/mL N-methyl-N-nitro-N-nitrosoguanidine (NTG) for 60 minutes. Screening for oleic acid auxotrophs (Ufa mutants) with impaired $\triangle 9$ desaturase activity, responsible for converting stearic acid to oleic acid, led to the isolation of 13 mutants. Seven major fatty acids were analyzed in these mutants: oleic acid, palmitic acid, stearic acid, linoleic acid, myristic acid, α-linolenic acid, and palmitoleic acid. Total saturated fatty acid (TSFA) content increased compared to the wild type, with SM1 and YH3 showing the highest values among the mutants. Compared to the wild type (oleic acid 43%, palmitic acid 35%, stearic acid 5%, TSFA 43%), SM1 had oleic acid at 15%, palmitic acid at 8%, and stearic acid at 49%, resulting in a TSFA content of 58%. YH3 had oleic acid at 15%, palmitic acid at 22%, and stearic acid at 37%, resulting in a TSFA content of 61%. Therefore SM1 and YH3 are suitable for the production of yeast lipids with increased saturated fatty acid content.

Corresponding author E-mail: missa1976@swu.ac.kr

지속 가능한 바이오소재 개발을 위한 식물세포 캘러스 배양 기반 연구: EVs와 PDRN 중심으로

김승진^{pc}

㈜스페바이오

본 연구는 식물세포 캘러스 배양을 활용한 지속 가능한 바이오소재 개발 가능성과 그 기능적 효용을 규명하고자 하였다. 먼저, Lithospermum erythrorhizon 캘러스로부터 유래한 엑소좀 유사 세포외소포체(LELVs)를 정상 인간 진피섬유아세포(NHDFs)에 적용한 결과, 세포 생존율과 증식이 향상되었으며 스크래치 상처 회복과 type I 프로콜라겐 합성이 촉진되었다. 더 나아가 LPS로 지연 치유가 유도된 마우스 상처 모델(14일 추적)에서 LELVs 처리군은 재상피화가 가속화되고 염증세포 침윤이 감소했으며, H&E 및 Masson's trichrome 염색에서 콜라겐 침착이 증가하는 등 조직 재형성 이 뚜렷하게 개선되었다. 이러한 결과는 LELVs가 세포 수준뿐만 아니라 생체 수준에서도 항염과 조직 재생 효과를 발휘함으로써 상처 치유를 촉진할 수 있음을 시사한다. 한편, Gynostemma pentaphyllum 캘러스에서 생산된 polydeoxyribonucleotide(PDRN)는 식물 유래 DNA를 효소적으 로 분절하여 확보한 것으로, 피부 장벽 손상 모델에서 keratinocyte 생존율을 높이고 항산화 작용과 상처 회복을 촉진하였다. PDRN은 filaggrin(FLG), involucrin(IVL) 등 주요 장벽 단백질의 발현을 증가시키는 동시에 claudin-1(CLDN1) 발현을 조절하여 피부 장벽 기능을 강화하였다. Transcriptome 분석과 qRT-PCR 검증은 장벽 관련 유전자 네트워크의 유의한 조절을 확인하였으며, 이는 PDRN이 피부 재생뿐 아니라 외부 환경 스트레스로부터의 방어 기능까지 보강할 수 있는 잠재력을 지님을 시사한다. 종합적으로, 본 연구는 식물세포 캘러스 배양 기술이 동물자원 의존적 바이오소재를 대체하고, 친환경적이고 지속 가능한 방식으로 고기능성 소재를 안정적으로 생산할 수 있는 플랫폼임을 제시한다. 특히 EVs와 PDRN 사례는 식물 기반 소재가 재생의학, 화장품, 기능성 식품 등 다양한 분야로 확장될 수 있음을 보여주며, 이는 향후 환경생물학적 관점에서 지속 기능성과 응용성을 동시에 충족시키는 중요한 전략이 될 수 있다. 본 연구는 차세대 친환경 바이오소 재 개발과 산업화 기반을 마련하는 데 기초 자료로 활용될 것이다.

교신저자 E-mail: sgenekim@gmail.com

미세조류 유래 바이오 소재 개발

안승우, 한상일, 최윤이[©]

고려대학교 생명과학대학 환경생태공학부

광합성 미생물인 미세조류는 수계 생태계에 중요한 일차 생산자로서 기후 변화의 주범인 이산화탄소를 빠르게 생물학적 고정화하는 동시에 여러 수계 영양 염류를 제거 할 수 있어서 각광을 받아 왔다. 또한 미세조류 바이오매스는 다양한 대사물질들을 포함하고 있어서 산업적인 응용 가능성도 매우 높다고 하겠다. 미세조류 대사물질 중에는 일차 대사물질인 지질, 탄수화물, 단백질 등이 있으며, 이 외에도 산업적 가치가 아주 높은 생리활성물질들과 같은 이차 대사물질도 포함한다. 이러한 중요한 의의를 지니는 미세조류를 활용하기 위하여서는 타겟 대사물질 생산에 적합한 미세조류 균주 개발, 선별된 균주들의 배양을 통한 미세조류 바이오매스의 효과적인 생산, 미세조류 바이오매스의 친환경적 회수 및 수확, 획득된 미세조류 바이오매스로부터 활용 가능한 대사 물질들의 추출 등과 같은 일련의 공정이 필요하다고 하겠다. 본 발표에서는 몇몇 산업적으로 의의가 있는 미세조류 종들을 활용한 미세조류 바이오매스의 효과적인 생산 시스템 구축과 아울러 해당 미세조류가 생산 할 수 있는 다양한 유용 물질들에 대하여 연구 사례를 기반으로 포괄적으로 발표해보고자 한다. 또한, 미세조류 대사물질의 경제성 있는 생산을 위한 여러 가지 전략들에 관하여서도 간략히 살펴보고자 한다.

교신거자 E-mail: yechoi@korea.ac.kr

특별세션 3 (Special Session 3)

야생생물소재은행의 역할과 활용 가치 탐색

일 시: 2025년 10월 23일(목) 13:30 - 15:30

장 소: 그랜드볼룸 (Grand Ballroom)

		좌장: 김기영/제주대학교
13:30 - 13:45	S3-1	국가야생생물소재은행 소개 및 소재 활용 사례 배은희 (국립생물자원관)
13:45 - 14:00	S3-2	담수생물자원은행 소개 정유진 (국립낙동강생물자원관)
14:00 - 14:15	S3-3	섬생물소재은행 현황 및 역할 주재형 (국립호남권생물자원관)
14:15 - 14:30	S3-4	유용성 연구의 필요성과 향후 계획 손연경 (국립생물자원관)
14:30 - 14:45	S3-5	면역질환 조절 야생생물 소재 탐색 변상균 (연세대학교)
14:45 - 15:00	S3-6	Physiological activity-based screening of freshwater microorganisms for the discovery of functional biomaterials Hyung-Gwan Lee (Korea Research Institute of Bioscience and Biotechnology)
15:00 - 15:15	S3-7	Exploring functional potentials of island and coastal biota for sustainable resource utilization Yeong-Seon Won (Honam National Institute of Biological Resources)
15:15 - 15:30	S3-8	점·연안 미생물 배양체 유용성 통합분석과 미생물자원의 가치 및 전망 이환휘 (국립호남권생물자원관)

국가야생생물소재은행 소개 및 소재 활용 사례

배은희^{рс}, 김원희, 김태호, 조가연

환경부 국립생물자원관 생물소재활용과 국가야생생물소재은행

환경부 소속 국립생물자원관은 2010년 유전자원, 2013년 미생물배양체와 천연물, 2014년 야생식물종자 소재 관리를 순차적으로 시작하여, 2021년 4월 야생생물소재연구동을 신축하고 생물소재 보존시설을 모아 관리체계를 갖추고 국가야생생물소재은행을 본격 운영하였다. 현 재까지 자생생물 약 28만 여점 확보·관리하고, 산·학·연 236개 기관에 3만 점 이상의 생물소 재를 무상 분양하였다. 국가야생생물소재은행에서는 야생생물 소재를 확보하여 형태 분석과 유전자분석으로 정확하게 종동정하고 소재별 맞춤 품질점검을 실시하며, 최적 조건으로 보존 하고 있다. 유전자원은 자생생물의 종 확인, 유전형 확인 등을 위한 참조시료로 주로 활용된 다. 동물·식물·미생물 등 다양한 분류군의 조직과 DNA 20,000여 종 220,000여 점을 보존 · 관리하며 고품질의 시료를 분양하여 관련 연구를 지원하고 있다. 자생 미생물자원의 보존과 활용을 위해서 원핵생물, 균류, 조류(藻類) 배양체 26,000여 주를 확보하고, 분류군별 특성에 맞는 보존 방법으로 관리하며, 분양시 균주별 최적 배양조건 등의 정보를 함께 제공하고 있 다. 자생생물의 산업적 활용 촉진을 위해 야생생물 추출물 7,000여 점을 확보·관리하고 천연 물 연구를 수행하는 국내 연구자 및 산업계에 분양하고 있다. 확증표본과 유전자 분석으로 정 확하게 종동정된 자생식물 추출물의 추출방법 등 정보 제공으로 신뢰도 높은 천연물을 제공 한다. 자생 식물자원의 지속가능한 활용을 위해 야생식물 종자 포자 26,000여 점을 확보하고 분류군별 특성에 따라 보존하고 있다. X-ray, 멀티스펙트럼 분석를 이용한 비파괴 종자 충실 도, 활력 검사 등을 통해 품질을 관리하고, 발아조건·증식 조건 등 종별 특성정보를 분양시 함 께 제공한다. 또한, 수요자 맞춤형 종자 확보, 발아 특성·조건 연구와 주요 소재의 대량증식 기술 개발 등으로, 야생식물의 소재화 및 대중화에 기여하고 있다. 국가야생생물소재은행에서 는 용도별 최적 소재와 대상종의 분류·생태정보, 유용성·특허 정보, 증식 조건 등 종합정보를 제공하는 '야생생물소재 전문컨설팅'을 제공하여 의약품, 식품, 화장품 등 각 분야 바이오산업 의 신소재로 활용을 촉진하고 있다. 국가 생물자원을 관리하는 야생생물 클러스터의 중앙은행 으로서 환경부 3개 생물자원관의 야생생물소재 통합검색 및 분양신청 가능한 「국가생물자원 정보 통합검색(http://species/nibr.go.kr/integration/)」을 구축하여 소재 분양의 접근성을 향상 시키고 있다. 분양 소재를 활용하여 논문 88건, 특허 34건 등 주요 성과 누계 368건 도출을 지원하였는데, 그 중 국가야생생물 소재를 활용한 사례를 소개하고 보다 많은 산학연 기관이 소재분양을 통해 국가 야생생물소재를 활용할 수 있도록 지원을 확대하고자 한다.

교신저자 E-mail: ehbae@korea.kr

담수생물자원은행 소개

정유진^{PC}, 남승원, 박영환, 조복연, 서민정, 김혜강, 남윤종, 권현진

국립낙동강생물자원관 자원은행부

국립낙동강생물자원관 담수생물자원은행(Freshwater Bioresources Culture Collection)은 국 내 유일의 담수 야생생물 소재은행으로, 고부가가치 잠재력을 지닌 담수 생물소재의 확보. 보존·분양 업무를 수행하고 있습니다. 담수생물자원은행은 2016년 설립된 이후 현재까지 약 34,549개('25년 8월 기준)의 생물소재(미세조류, 세균, 진균, 추출물, 유전자원)를 확보하여 보존하고 있으며, 지난 9년간 32,567개('25년 8월 기준)의 소재를 다양한 분야의 산·학·연 연 구자에게 제공해왔습니다. 담수생물자원은행은 ① 담수생물소재 및 정보의 지속적인 확보와 국제적 수준의 품질관리, ② 수요자 맞춤형 자원은행 운영을 통한 분양 활성화, ③ 협력 네 트워크 구축 및 홍보 기반 담수생물소재의 가치 제고, ④ 담수 미세조류의 장기보존 및 활 용정보 확보를 목표로 운영되고 있습니다. 이를 달성하고자 매년 6,000여 개의 담수생물소 재를 신규 확보하고 있으며 소재의 기초유용성 및 오믹스 정보를 함께 생산해 소재와 연계 하여 관리하고 있습니다. 또한 국제적 수준의 고품질 소재를 제공하기 위해 2024년 생물자 원은행 국제표준인 ISO 20387 인정을 획득하여 유지하고 있습니다. 담수생물자원은행은 수 요자 맞춤형 소재 제공을 위해 매년 산·학·연 연구자 대상 소재 관련 수요 조사를 실시하고 있고, 분양 활성화를 위한 소재 이용자 대상 만족도 조사와 소재 분양 이후의 활용결과 모니 터링을 수행하고 있습니다. 뿐만 아니라 담수생물자원은행은 '미세조류'를 대표소재로 선정 하고 특화연구를 추진하고 있습니다. 미세조류의 유용성까지 보존할 수 있는 동결기술 개발 연구, 다중오믹스 분석을 통한 유해 남조류의 독소 생성능 연구 등을 진행하고 있으며, 특히 '24년부터 지난 연구를 통해 개발된 미세조류의 중장기 보존기술을 실제 자원에 적용하는 작업을 수행하고 있습니다.

교신저자 E-mail: eujenee@nnibr.re.kr

섬생물소재은행 현황 및 역할

주재형^P, 최영지, 남보미 조의상, 고주은, 노인화, 김서현, 남현주, 박남진^C

국립호남권생물자원관 도서생물연구본부 산업화지원실 자원은행부

우리나라에는 약 3,400여 개의 섬들이 있으며, 해양과 육지가 교차하는 자연적 특성과 연안, 습지 등의 고유환경을 유지하여 생물소재 개발의 무궁한 잠재성을 가지고 있다. 국립호남권생물자원관 섬생물소재은행(Bank of Bioresources from Island and Coast)은 2021년 11월 개소한 국내 유일의 섬·연안 야생생물소재 전문기관으로서 천연물(원시료, 추출물), 유전자원(gDNA, 조직), 배양체(세균, 균류, 미세조류)에 대한 생물소재의 보존·관리·분양 업무를수행중이다. 섬생물소재은행은 2023년부터 국제 표준인증 품질경영시스템(ISO9001) 인증획득·유지를 통해 야생생물소재 품질관리 시스템 고도화 및 소재 품질의 신뢰도를 높여 분양 활성화에 기여하고 있다. 뿐만 아니라, 2025년에는 생물소재은행의 국제적 도약을 위해세계미생물은행연맹(WFCC) 가입을 통해 국제 네트워크 구축 기반을 마련하였으며, 생물소재은행 인정 제도인 ISO 20387 인정을 받기 위해 추진중이다. 또한, 국가생명연구자원 빅데이터 구축 전략의 일환으로 다부처 국가생명연구자원 선진화사업을 위한 "섬 야생생물 소재선진화 연구단"을 2023년 공식적으로 출범하여, 2026년까지 섬·연안 특화 야생생물 소재(2,914점 이상) 및 오믹스 빅데이터(3만 6,000건 이상), 유용성 정보(4만 9,462건 이상)를확보하고, 소재의 활용성을 높이기 위해 섬생물소재은행의 인프라 고도화를 통한 산·학·연 수요자에게 고품질의 맞춤형 소재를 제공하고 있다.

교신저자 E-mail: pnjeo@hnibr.re.kr

유용성 연구의 필요성과 향후 계획

손연경^P, 이승기, 이사라, 김가륜, 이재진, 오현경^C

기후에너지환경부 국립생물자원관 생물자원활용부 생물소재분석과

바이오대전환 시대를 맞아 세계 각국에서는 자국의 생물자원의 보전과 지속가능한 이용을 위하여 노력하고 있으며, 생물자원의 생리학적 활용성에 대한 관심도 증가하고 있다. 기후에 너지환경부의 중요한 법적 역할 중 하나로 자연과의 조화를 위한 생물다양성의 보전과 더불어 야생생물자원의 지속가능한 이용이 있다. 이에, 국립생물자원관을 비롯한 국립낙동강생물자원관, 국립호남권생물자원관은 가치가 발굴되지 않은 생물자원에 대한 유용성을 밝히고, 이를 산업 소재화하기 위한 노력을 지속적으로 추진하고 있다. 국가 소속·산하기관으로 국가생물종목록을 매년 발굴, 확보하여 '24년까지 61,230종을 목록화하였고, 이에 따른 정확한 종정보를 기반으로 현재까지 약 2,000여점의 시료에 대한 기초 유용성 분석으로 야생생물자원에 대한 유용성 정보를 축적하고 있다. 또한 이에 머물지 않고 향장, 식품, 의약품 등의 산업계에 생물소재로 연계하기 위하여 심화연구, 성분분석, 대량 증식법 등의 연구를 추진하고 있다. 향후 보다 많은 우리나라 생물자원의 소재화를 위하여 인허가 과정에 연관된연구를 추진하여 국민의 이익 실현에 보다 적극적으로 노력할 예정이다.

교신저자 E-mail: ohk92@korea.kr

면역질환 조절 야생생물 소재 탐색

연세대학교 생명공학과

인구 고령화에 따른 건강 관리에 대한 관심이 증대됨에 따라, 기능성 생물자원 소재에 대한 수요는 지속적으로 증가하고 있음. 특히, 각종 질병에 대해 맞춤형으로 관리하는 '질병 맞춤 관리' 패러다임이 도래하고 있으며, 이를 위해 특정 질병에 대한 신규 활성물질을 발굴함으로써 다양한 생물자원의 건강기능성 데이터베이스를 확보하고 실용화하는 것에 대한 중요성이 강조되고 있음. 하지만 국내 야생생물자원에 함유된 성분 및 생리활성에 대한 정보는 아직 잘 알려지지 않은 것이 많은 실정임. 이에 본 연구에서는 국내 야생생물의 면역기능조절 능력을 평가하여 면역질환 개선에 활용할 수 있는 신규 유용 야생생물 자원을 발굴하는 연구를 수행하였음. 면역기능 증진을 통해 감염성 질환에 대한 방어능력을 향상시키는 소재에 대한 탐색 및 과민성면역 억제를 통해 염증성 질환의 병리를 개선할 수 있는 소재에 대한 탐색을 수행하였음. 44종의 국내 야생생물 자원의 바이러스 감염 및 진균 감염에 대응하는 면역증진 효능을 평가하였고, 류마티스와 관절염의 염증 반응을 억제하는 효능을 평가하였음. 이를 기반으로 우수한 신규 국내 야생생물 소재들을 발굴하여 해당 질환에 대한 개선/치료 효능 및 작용기전을 구명하였음.

교신저자 E-mail: sanguine@yonsei.ac.kr

Physiological activity-based screening of freshwater microorganisms for the discovery of functional biomaterials

Hyung-Gwan Leepc

Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)

The aim of this research is to explore functional bioresources preserved in the Freshwater Bioresources Culture Collection (FBCC), focusing on bacteria and fungi, and to expand them into industrially applicable source materials. To build a robust foundation for commercialization, we conducted systematic in vitro assays covering five key biological activities: antioxidant, anti-obesity, anti-inflammatory, antiviral, and whitening. This enabled the establishment of a comprehensive bioactivity information platform. Strains exhibiting strong activities were further characterized through taxonomic identification, genome-based metabolic analysis, purification of active compounds, and mechanism studies, ensuring both scientific validation and industrial applicability. Among them, Streptomyces sp. ABC and Janhtinobacterium sp. DEF showed anti-melanogenesis effects via tyrosinase inhibition and promoted dermal papilla cell growth through activation of the β -catenin signaling pathway. Activity-guided fractionation followed by NMR analysis identified the active metabolites as prunetin (an isoflavone derivative) and violacein. Together, these results provide an integrated dataset connecting resource traits, bioactive compounds, and mechanisms of action, highlighting their potential as novel non-listed ingredients for whitening cosmetics and hair-care formulations. More broadly, this work underscores that freshwater microbial resources, combined with detailed physiological data, represent critical assets for industrial translationand will play a key role in building a sustainable supply chain for the functional bioindustry.

Corresponding author E-mail: trustin@kribb.re.kr

Exploring functional potentials of island and coastal biota for sustainable resource utilization

Yeong-Seon Won^p, Chul-Min Park, and WonWoo Lee^c

Division of Practical Research, Department of Integrative Bioresources, Honam National Institute of Biological Resources (HNIBR)

The intertwined challenges of climate change, environmental pollution, and biodiversity loss form a triple crisis that threatens both ecological stability and sustainable access to natural resources. In this study, wild organisms from island and coastal regions were investigated for their functional properties, including immune-modulatory, anti-cancer, anti-obesity, and anti-viral effects. These evaluations confirmed the bioactive potential of natural resources as promising sources of high-value compounds for pharmaceutical and functional applications. To overcome the limitations of resource extraction from rare or endangered plants, we propose a strategy integrating genomic information with synthetic biology-based metabolic engineering. By securing genomic data from island biota and designing optimized biosynthetic pathways, valuable natural compounds can be continuously and sustainably produced in microbial systems. This approach reduces ecological disturbance, ensures a stable supply of biomaterials, and establishes an environmentally friendly and economically viable production platform. Ultimately, this framework contributes to the creation of national intellectual property and provides scientific foundations for the sustainable utilization of biological resources, offering new directions for environmental biology in the era of climate, pollution, and biodiversity crises.

Corresponding author E-mail: 21cow@hnibr.re.kr

섬·연안 미생물 배양체 유용성 통합분석과 미생물자원의 가치 및 전망

이환휘한, 송혜선, 류상돈, 이진아, 송승희, 김윤지, 이성문, 천세원

국립호남권생물자원관 환경소재연구부

본 연구는 섬·연안 특이적 환경에서의 유용생물자원 발굴하고 분리된 미생물 자원을 바탕 으로 기초 유용성평가를 수행하여 확보된 미생물 배양체 유용성에 대해 통합 분석을 실시하 였다. 국내 섬·연안 지역의 특이적 환경인 폐기물 적치장, 양식장, 축산·발효 폐수, 갯벌, 오 염토양 등에서 2021년 5월부터 2023년 11월까지 각 373개 지점을 조사하여 토양, 갯벌 퇴적 물, 해수, 담수 등의 시료로부터 총 3,773점의 미생물 분류군별 세균, 균류 미세조류 배양체 를 확보하여 동정하였으며, 국립호남권생물자원관 섬생물소재은행에 2,971점을 기탁하였다. 확보된 배양체는 분류군별로 유용성 평가를 실시하였으며, 그 중 세균 배양체로는 amylase, protease, lipase, esterase의 고분자유기물 분해능력을 각각 파악하여, 기초 유용성 평가 항목 별 등급화하였다. 확보된 배양체 유용성 평가는 총 9,080건이었으며, 유용성 평가 4개 항목 에 대한 각각의 A 등급은 7~16%로 나타났다. 유용성 평가를 점수화하여 세균 365건을 선별 하였고, 채집시기, 채집 지역, 채집원에 따라 통합분석을 실시하였다. 채집시기에 따른 유용 성 평가 분석 결과, 4월에 통계적으로 가장 높았으며, 군산지역, 토양에서 세균 배양체 유용 성평가 결과가 우수하게 나타났다. 또한 생물분류체계에 따라 Bacilli 및 γ -proteobacteria 강, Caryophanales, Alteromonaales, 및 Vibrionales 목, Bacillaceae, Vibrionacea, Pseudoalteromonadceae 과에서 우수한 유용성평가 결과를 나타내었다. 이러한 미생물자원을 심화하기 위해 유용성 평가결과가 우수한 세균 배양체에서는 알케인 및 벤젠류 등의 유류오염물질을 분해하는 균 주를 선별하였으며, 우수한 균류는 페놀류 산화 능력을 나타내는 바벤담 시험을 통해 선별하 여 크리스탈 바이올렛, 오렌지 G 등의 염료를 탈색하는 능력을 보였다. 이러한 유용미생물자 원은 오염물질을 저감·분해하여 환경을 개선하는 생물소재로 실용·상용화하는데 이용하고, 또한 지속적인 유용 생물자원 발굴을 이뤄갈 전망이다.

교신저자 E-mail: aslan.lee@hnibr.re.kr

특별세션 4 (Special Session 4)

해양 환경오염물질의 유해영향 평가

일 시: 2025년 10월 23일(목) 13:30 - 15:30

장 소: 스위트홀 (Suites Hall)

PART I 좌장: 곽인실/전남대학교, 이영미/상명대학교 PART II 좌장: 정지현/한국해양과학기술원, 박준우/국가독성과학연구소

PART I	13:30 - 13:50	S4-1	해양 저서생물의 폴리에틸렌 테레프탈레이트 미세플라스틱 만성 독성 송진영 (국가독성과학연구소)
	13:50 - 14:10	S4-2	Multixenobiotic Resistance (MXR) as a first line of defense against the species-specific toxicant 6PPD in the rotifer <i>Brachionus plicatilis</i> Chang-Bum Jeong (Incheon National University)
	14:10 - 14:30	S4-3	안정동위원소를 활용한 생태계 구조 및 유해물질 거동 연구와 향후 확장 가능성 원은지 (한양대학교)
PARTI -	14:30 - 15:00	S4-4	해양생물에 대한 미세플라스틱 영향의 메타볼롬 분석결과 리뷰 정태용 (한국외국어대학교)
	15:00 - 15:30	S4-5	환경유해인자의 복합위해성 예측을 위한 AI 모델링 전략 김선미 (한국화학연구원)

해양 저서생물의 폴리에틸렌 테레프탈레이트 미세플라스틱 만성 독성

송진영^{p1}, 최진수¹, 남현지¹, 채유은¹, Asna Ali², 박준우^{c1,2}

¹국가독성과학연구소 미래환경영향연구센터 ²과학기술연합대학원대학교 인체 및 환경 독성학

다양한 중합체, 크기 및 형태의 미세 플라스틱(MP)은 수생 환경에 널리 분포합니다. 저서 환경에서는 폴리에틸렌 테레프탈레이트(PET), 폴리비닐, 폴리스티렌과 같은 고밀도 MP가 흔 히 발견됩니다. 그러나 저서 생물에 대한 MP의 크기 및 형태 의존적 독성을 보고한 연구는 거의 없습니다. 본 연구에서는 두 가지 형태(Fragment와 Fiber)와 세 가지 크기(S, M, L)의 PET MP가 저서성 갑각류인 Monocorophium uenoi와 바지락 Ruditapes philippinaum에게 미치 는 만성 독성을 조사했습니다. 35일간의 단각류 실험 후 유영 활동, 에너지 분포 및 산화 스트 레스를 평가했습니다. 다양한 크기와 형태의 MP에서 M. uenoi의 생존율을 사용하여 최저 관 찰 효과 농도(LOEC)를 계산했습니다. LOEC는 0.0005 mg/L의 파편형 MP(S, M)에 대해서만 측정했습니다. 섬유형 MP는 파편형 MP에 비해 유영 활동이 유의미하게 감소했습니다. 파편 형 MP에 노출된 *M. uenoi*의 지질 과산화는 총 항산화능이 증가함에 따라 유의미하게 증가했 습니다. 본 연구 결과는 단각류에 대한 PET MP의 독특한 형태 의존적 만성 독성을 강조하는 데, 섬유형 MP는 주로 행동 장애를 유발하는 반면, 섭취가 더 쉬운 단편화된 MP는 분자 독성 을 유발합니다. 21일간의 바지락 노출 후 파편형 MP(S, L)는 R. philippinarum의 여과 속도에 더 높은 독성(LOEC = 0.8mg/kg 침전물)을 유발했지만 호흡 속도에는 유의미한 영향이 관찰 되지 않았습니다. 섬유형 MP(L)의 호흡 속도는 다른 처리에 비해 낮은 LOEC(0.8mg/kg 침전 물)를 보였습니다. 또한 섬유형 MP는 리소좀 막 안정성을 크게 감소시켰지만 단편화된 MP는 그러한 효과가 없었습니다. 이 생리적 독성은 아가미(Gill)와 소화선(DG)에 MP가 축적되어 유 래될 수 있습니다. 따라서 Gill과 DG에서 분자 및 생화학적 분석(ROS, SOD, IL-1 β , CASP8 등)을 수행했습니다. 파편형 MP(L)은 Gill과 DG 모두에서 스트레스 반응과 생태학적 위험을 평가하는 통합 바이오마커 반응이 더 높았습니다. 결과적으로, 본 연구는 해양 저서성 생물에 대한 만성 독성이 MP의 형태에 따라 다르다는 것을 보여주며, 이는 MP가 해양 환경에 심각 한 생태학적 위험을 초래할 수 있음을 시사합니다.

교신저자 E-mail: jwpark@kitox.re.kr

Multixenobiotic Resistance (MXR) as a first line of defense against the species-specific toxicant 6PPD in the rotifer *Brachionus plicatilis*

Harin Jeong, Seong-Eun Hong, and Chang-Bum Jeong^{pc}

Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea

The ingredients of tire-rubber products comprise a complex array of chemical additives, many of which leach into surrounding waters as unmeasured toxicants with largely unexplored ecotoxicological consequences. This study summarizes the reported species-specific acute and chronic toxicity of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), the ozonation product of the antioxidant 6PPD used in tire rubber. While 6PPD-Q has been shown to be highly toxic to several salmonid species, only moderate chronic toxicity was observed in the rotifer *Brachionus plicatilis*. Furthermore, multixenobiotic resistance (MXR), mediated by P-glycoproteins (P-gps) and multidrug resistance proteins (MRPs), was identified as a first line of membrane defense against 6PPD-Q exposure; inhibition of MXR markedly increased mortality, highlighting its critical protective role. These findings indicate unanticipated risks posed by tire-derived chemical additives, which should be considered emerging contaminants of toxicological concern, and provide new insights into the mechanisms underlying the species-specific toxicity of 6PPD-Q.

Corresponding author E-mail: cbjeong@inu.ac.kr

안정동위원소를 활용한 생태계 구조 및 유해물질 거동 연구와 향후 확장 가능성

원은지^{pc1,2}, 윤희영^{1,2}, 김도균³, 조하은^{1,2}, 신경훈^{c1,2}

¹한양대학교 창의융합교육원 ²한양대학교 해양대기과학연구소 ³한국해양과학기술원

안정동위원소 분석은 생태계의 구조와 에너지 흐름을 이해하는 데 중요한 도구로 자리 잡았 다. 특히 δ^{13} C와 δ^{15} N을 활용한 ecological niche 해석은 어류와 해파리 등 담수 및 해양에서 다 양한 생물의 서식지 이용, 섭식 전략, 그리고 생리적 특성을 규명하는 데 기여하고 있으며, 이 를 통해 종 간 생태적 지위 의 겹침(niche overlap)과 먹이망 내 자원 경쟁 관계 등을 밝힐 수 있었다. 동시에 trophic magnification factor (TMF)는 유해물질이 먹이망을 따라 어떻게 축적 확 산되는지를 평가하는 핵심 지표로 활용되고 있다. 최근에는 compound-specific isotope analysis (CSIA-AA)를 적용하여 영양단계(trophic position) 추정을 정밀화되고 있으며, TMF 및 bioaccumulation factor의 불확실성을 개선하는 연구가 수행된 바 있다. 생활화학제품이나 소독 제 기인 화학물질 연구 사례에서는 물질의 축적이 아닌 bio-dilution이 확인되기도 하여, 동위원 소 기반 TMF 연구가 물질 특성에 따른 생태계 거동 평가를 정교화하는 데 기여하고 있음을 보여준다. 본 발표에서는 안정동위원소비를 이용한 ecological niche 해석, compound-specific isotope 기반 TMF 연구 사례를 종합하며, 이를 통해 안정동위원소 분석이 생태계 구조 이해와 위해성 평가를 연결하는 핵심적 역할을 수행할 수 있음을 제시하고자 한다. 나아가 최근 일부 연구에서는 stable isotope 기법을 미세플라스틱의 기원 판별, 분해, 섭식, 및 생태계 내 이용 가 능성 추적에 적용하려는 해외 시도가 보고되고 있어, 본 발표에서는 이러한 사례도 함께 소개 하며 향후 연구의 확장 가능성을 논의하고자 한다.

교신저자 E-mail: ejwon@hanyang.ac.kr / shinkh@hanyang.ac.kr

해양생물에 대한 미세플라스틱 영향의 메타볼롬 분석결과 리뷰

정태용 pc1 , 정지현 2 , 곽인실 3 , 안윤주 4 , 이영미 5 , 박준우 6 , 이재성 7 , 정창범 7

¹한국외국어대학교, ²한국해양과학기술원, ³전남대학교, ⁴건국대학교, ⁵상명대학교, ⁶국가독성과학연구소, ⁷인천대학교

본 연구에서는 최근 3년여간 발표된 국내연구팀들의 해양 미세플라스틱 유해성 연구결과 중, 메타볼롬 분석 결과를 종합 및 리뷰하였다. 본 리뷰의 초점은 미세플라스틱의 형태, 크기, 농도 등이 가지는 일관된 혹은 구분지어지는 변화가 형태에 의해서 발생되었는가 하는 부분을 포함한다. 또한 생물 종에 따라서 나타난 메타볼롬의 정량적 변화는 어떤 추세를 나타나는지도 분석하였다. 동시에 각 노출시험 간 차이점이 있음으로 인해서 발생했을 것으로 예상되는 또는 그 외 다른 인자들에 의해서 발생했을 것으로 예상되는 리뷰 연구적 한계점도 함께 제공하였다. 본 연구를 통해서 해양 미세플라스틱에서 나타나는 메타볼롬 수준에서의 유형적 영향을 고찰하고, 이 영향들이 가질 생물학적 및 환경학적 의의에 대해서도 고찰하고자 한다.

교신저자 E-mail: tyj@hufs.ac.kr

환경유해인자의 복합위해성 예측을 위한 AI 모델링 전략

김선미[™], 서명원

한국화학연구원 화학플랫폼연구본부 화학분석센터

환경유해인자로 인한 건강 영향 예측 연구에서 AI 등 스마트 기술의 활용에 대한 요구는 점점 커지고 있다. 전 세계적으로도 화학물질 유해성 평가에서 in silico 및 in vitro 시험법을 활용한 대체시험법이 확대되는 추세다. 특히 혼합물의 유해성 평가는 단일 물질에 비해 고려해야 할 변수가 많고, 기존 시험법만으로는 한계가 있어 in silico 기반 예측이 필수적이다. 본 발표에서는 생활화학제품 내 혼합물 유해성을 예측하기 위한 모델 개발 전략과 방법론을 소개한다. 예측 모델 개발을 위해서는 성분의 종류, 개수, 상호작용 정보, 종말점 등에 따라 차별화된 전략이 필요하다. 첫 번째로, 성분 간 상호작용이 없는 혼합물의 독성을 예측하는 2단계 모델과, 이를 구현하기 위한 딥러닝 오토인코더 기술을 다룬다. 두 번째로, 데이터 가용성을 고려한 모델 개발 전략과, 딥러닝을 활용한 빅데이터 기반 성분 상호작용 예측 모델을 제시한다. 그러나 현재 환경유해인자의 위해성 평가 연구에서는 다양한 건강 영향에 적용할 수 있는 데이터가 부족하다. 따라서 신뢰도 높은 예측 모델 구축을 위해 연구팀 간 협력, 데이터 공유, 모델 검증 및 고도화가 필수적이다. 또한 복합 위해성 평가, 안전한 제품 설계 지원, 화학물질 혼합 노출 관리를 위해 통합독성평가(Integrated Approaches to Testing and Assessment, IATA) 구성 및 검증 연구가 요구된다.

교신저자 E-mail: skim@krict.re.kr

특별세션 5 (Special Session 5)

수생태계 건강성 확보를 위한 환경생물학적 관리방안

일 시: 2025년 10월 23일(목) 15:50 - 17:50

장 소: 그랜드볼룸 (Grand Ballroom)

좌장: 이호준/마린유겐트코리아

15:50 - 16:10	S5-1	Framework for establishing water quality standards to protect aquatic organisms in Korea Tae Jin Park (National Institute of Environmental Research)
16:10 - 16:30	S5-2	A 21-day <i>Lemna minuta</i> bioassay elucidates chronic toxicity profiles of twelve pharmaceutical contaminants Jihae Park (Ghent University Global Campus)
16:30 - 16:50	S5-3	Rapid and accurate ecotoxicological assessment using Cyprinus carpio cells Joon Tae Park (Incheon National University)
16:50 - 17:10	S5-4	유해물질에 대한 국내 서식 담수 어류의 취약성 평가 염동혁 (국가독성과학연구소)
17:10 - 17:30	S5-5	GA-MLR QSAR model for predicting aquatic toxicity of phenol derivatives in <i>Ulva australis</i> Jae Hyoun Kim (Hanyang University)
17:30 - 17:50	S5-6	Development of indigenous species-based bioassay technologies for aquatic ecological risk assessment in Korea Taejun Han (Ghent University Global Campus)

Framework for establishing water quality standards to protect aquatic organisms in Korea

Tae Jin Park^{pc}

Water Use and Management Research Division, Water Environmetal Rsearch Department, National Institute of Environmental Research, Incheon, 22689, Korea

The establishment of scientifically sound water quality standards is essential for safeguarding aquatic organisms and maintaining ecological integrity. In Korea, current water quality management has traditionally emphasized human health and industrial use, while ecological protection has received comparatively limited attention. This paper proposes a comprehensive framework for developing water quality standards specifically designed to protect aquatic organisms. The framework integrates ecological risk assessment, laboratory and field toxicity data, and species sensitivity distribution (SSD) approaches to derive scientifically defensible threshold values. It highlights the importance of generating region-specific ecotoxicological data, particularly for indigenous freshwater species, to reduce uncertainties associated with the application of foreign benchmarks. Stakeholder involvement, including regulators, scientists, and industry, is emphasized to enhance transparency and policy acceptance. Aligning with international practices such as those of the EU Water Framework Directive and the U.S. EPA guidelines, the proposed framework balances global methodologies with Korea's unique ecological and regulatory context. Ultimately, it provides a scientific and policy-oriented pathway to strengthen water quality management and ensure the long-term protection of aquatic life in Korean freshwater ecosystems.

Corresponding author E-mail: iloveapnews7@korea.kr

A 21-day *Lemna minuta* bioassay elucidates chronic toxicity profiles of twelve pharmaceutical contaminants

Hojun Lee^{1,2,3}, Soyeon Choi², Taejun Han^{1,2,3}, and Jihae Park^{pc1,2,3,4}

¹Marine@UGent Korea, Ghent University Global Campus, Incheon 21985, Korea ²Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Incheon 21985, Korea

³Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium

⁴Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, Incheon 21985, Korea

Although aquatic macrophytes are increasingly recognized as relevant models for chronic ecotoxicity testing, Lemna minuta has not been standardized despite its experimental advantages. In this study, we established L. minuta as a reproducible test species by optimizing culture conditions (25 \pm 1 °C and 100 μ mol m⁻² s⁻¹ of continuous light) and validating a single image analysis threshold for consistent quantification of frond area. We then performed chronic toxicity assays across 12 pharmaceuticals and revealed class-dependent chronification patterns: transformation-product-driven potency shifts in candesartan and metformin; oxidative and sterol-pathway stress in macrolides, azoles, and fluoxetine; and minimal chronification for fluoroquinolones and sulfamethoxazole. Species sensitivity distributions (SSDs) constructed from L. minuta, L. minor, and L. gibba produced predicted no-effect concentrations (PNECs) of 0.095 $\mu g L^{-1}$ for climbazole, 4.36 $\mu g L^{-1}$ for levofloxacin, and 0.70 $\mu g L^{-1}$ for sulfamethoxazole. These values closely matched regulatory benchmarks, including the EMA/FASS value for levofloxacin (4.4 μg L⁻¹) and the Swiss Ecotox Center standard for sulfamethoxazole (0.6 μg L⁻¹). Taken together, our findings demonstrate that Lemnaceae-based assays not only capture mechanistic diversity in pharmaceutical toxicity and generate protective thresholds that converge with multi-taxa assessments. This underscores the utility of these assays for prospective environmental quality standards.

Corresponding author E-mail: jihae.park@ghent.ac.kr

Rapid and accurate ecotoxicological assessment using *Cyprinus carpio* cells

Ji Ho Park, Byeonghyeon So, Minseon Kim, and Joon Tae Park^{pc}

Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University

Toxicants have serious negative effects on various aquatic organisms, and therefore rapid and accurate ecotoxicological assessments of toxicants are necessary. Fish-derived cells sensitive to toxins have been used as valuable tools for ecotoxicological assessments. However, this method requires a minimum toxicity treatment time of 96 h, which limits its use when rapid ecotoxicological assessments are required or ecotoxicological assessments of a large number of toxicants are performed. In this study, these limitations were overcome by adjusting parameters including the concentration of fetal bovine serum (FBS) in the medium and the treatment time of the toxicant. Specifically, we found that the maximum time for fish cells to remain unstarved was 6 h when using a medium containing 1% FBS. We applied both parameters to the ecotoxicological assessment (using a medium containing 1% FBS for the toxicity assessment and treating the toxicant for only 6 h). Surprisingly, these adjusted parameters allowed us to obtain faster and more accurate data than the traditional assessment. This improvement was due to the new assessment conditions that minimized the possibility that the growth-inducing effects of nutrients present in excess in the medium could interfere with the cellular response to the toxicant. In conclusion, we have established an ecotoxicity assessment that can generate rapid and accurate data on toxicants. This new platform will become the cornerstone of rapid and accurate ecotoxicity assessments of toxicants.

Corresponding author E-mail: joontae.park@inu.ac.kr

유해물질에 대한 국내 서식 담수 어류의 취약성 평가

이상준, 염동혁[©]

국가독성과학연구소 경남바이오환경연구본부

현재 사용하고 있는 어류의 수생태계 건강성 평가 기법은 유해 물질에 대한 어류의 취약성을 반영하지 못하는 경향이 있어 서식 생물종의 특성을 반영한 새로운 생태계 평가 지수를 개발하고자 2022년부터 환경부의 "유해 물질에 대한 무척추동물 및 어류의 취약성 평가기술 개발" 연구가 2026년까지 진행될 예정이다. 본 연구는 그중에서 국내 서식 담수어류에 관련된 부분만 발췌하였다. 1단계(2022년~2024년)에서는 국내에 서식하고 있는 담수어류 중에서 분포범위가 넓고, 실험실 환경조건에서 순화와 사육이 가능한 10종을 선정하였으며, 유해 물질로는 중금속류, 농약류, 의약물질 및 유기 오염물질 각각 5개 물질을 선정하여 급성독성시험을 실시하였다. 시험 물질에 따라서 어종 사이의 감수성은 차이가 나타났으며, 급성 노출에서는 comet과 necropsy based health assessment에서는 유의한 차이를 발견할 수 없었다. 유해 물질에 대한 취약성을 반영하여 현재의 수생태계 건강성 평가 기법을 보완하기 위한 내용도 같이 논의할 예정이다.

교신저자 E-mail: dhyeom@kitox.re.kr

GA-MLR QSAR model for predicting aquatic toxicity of phenol derivatives in *Ulva australis*

Jae Hyoun Kim^{pc}

Department of Functional Food, Hanyang University, Seoul 04763, Korea

Phenol derivatives are widely used in various industrial fields, but their toxicity raises concerns about their impact on the environment and human health. This study developed a quantitative structure-activity relationship (QSAR) model using a genetic algorithm-multiple linear regression (GA-MLR) approach to predict the *Ulva* toxicity (growth inhibition) of 20 phenol derivatives. The GA optimized four descriptors: LUMO, HOMO, MW, and MV. The developed GA-MLR model demonstrated strong predictive capabilities, achieving R²_{Train} = 0.91, R²_{Test} = 0.85, and Q²_{LOO} = 0.86, and was validated through Y-randomization and permutation tests. The GA-MLR model outperformed other linear regression models, including Stepwise, PLSR, Ridge, and Lasso. SHAP analysis identified LUMO and HOMO energy as the most influential descriptors for toxicity prediction, highlighting their critical role in electron transfer and bioactivity. However, the study noted that the GA-MLR model is not a direct substitute for *in silico* models like ECOSAR and VEGA for predicting *Ulva* toxicity, but its findings are expected to aid in predicting and managing the growth inhibition toxicity of phenol derivatives.

Corresponding author E-mail: kjhyon@hanyang.ac.kr

Development of indigenous species-based bioassay technologies for aquatic ecological risk assessment in Korea

Hojun Lee^{1,2,3}, Taejun Han^{pc1,2,3}, and Jihae Park^{c1,2,3,4}

¹Marine@UGent Korea, Ghent University Global Campus, Incheon 21985, Republic of Korea ²Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Incheon 21985, Republic of Korea

³Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium ⁴Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, Incheon 21985, Republic of Korea

Water quality and aquatic ecosystem management increasingly require robust ecological risk assessment frameworks that reflect local biodiversity. Existing international bioassays often rely on non-native model species, which limits their ecological relevance in Korea. To address this gap, the present project develops standardized bioassay technologies based on indigenous Korean species, aiming to provide reliable tools for both national policy and international standardization. The project seeks to: (1) establish acute (8 species) and chronic (3 species) bioassay methods using native organisms, (2) build a comprehensive ecotoxicity database covering 110 priority hazardous substances, and (3) apply and validate these methods through laboratory and field assessments, with a long-term vision of policy application and ISO standardization. In Phase I, eleven test organisms were selected across producers, consumers, and decomposers, and optimal culture protocols were established. Acute and chronic bioassays were applied to 110 chemicals, generating endpoints (NOEC, EC₁₀, EC₅₀) and deriving predicted no-effect concentrations (PNECs) through species sensitivity distribution modeling. A bilingual database was constructed, integrating international references but adapted to Korean ecological conditions. Cross-laboratory validation has begun, and two bioassay methods are now under ISO consideration. Phase II will extend to field applications at representative polluted and reference sites, integrating chemical analyses with long-term biological monitoring and developing AI-based predictive models. The project also pursues dissemination of protocols, database transfer, policy proposals, and commercialization of test kits. These efforts are expected to establish advanced ecological water quality criteria, reinforce national water management capacity, and promote the global competitiveness of Korean environmental technologies.

Corresponding author E-mail: Taejun.Han@ghent.ac.kr, Jihae.Park@ghent.ac.kr

특별세션 6 (Special Session 6)

해양플라스틱 거동 및 생태계 미치는 영향평가

일 시: 2025년 10월 23일(목) 15:50 - 17:50

장 소: 스위트홀 (Suites Hall)

좌장: 백승호/한국해양과학기술원

15:50 - 16:15	S6-1	Fragmentation of nano- and microplastics from conventional and biodegradable plastics by photooxidation in water Soeun Eo (Korea Institute of Ocean Science and Technology)
16:15 - 16:40	S6-2	Polymer-specific microplastics linked to dissolved nitrogen in Wando aquaculture waters Young Kyoung Song (Chonnam National University)
16:40 - 17:05	S6-3	Microplastic aggregation and sinking regulated by the harmful algae <i>Chattonella marina</i> and <i>Heterosigma akashiwo</i> : Implications for vertical transport and resuspension Kavindu Dhananjaya Sudusinghe (Korea Institute of Ocean Science and Technology)
17:05 - 17:30	S6-4	Marine plastic pollution impacts on sea turtles in Korea: current status and causes Hee-Jin Noh (Korea Institute of Ocean Science and Technology)

Fragmentation of nano- and microplastics from conventional and biodegradable plastics by photooxidation in water

Soeun Eo^{p1}, YoungKyoungSong², Sang Hee Hong¹, and Won Joon Shim^{c1}

¹Ecological Risk Research Department, Korea Institute of Ocean Science and Technology ²G-LAMP research institute, Chonnam National University, Gwangju, Republic of Korea

The production mechanisms of secondary nanoplastic (NP) and microplastic (MP), and changes in the surface properties during the weathering process have been actively studied in recent years. However, compared to parent plastics, information on these fragmented particles remains relatively scarce, particularly regarding particle quantification. This study investigated the changes in surface characteristics of five conventional thermoplastics and biodegradable plastic after photooxidation in water, as well as quantified the generated NPs and MPs and calculated their generation rates. PA showed the earliest surface cracking, followed by PET, PP and PS, while HDPE did not exhibit any surface cracks even after 176 days of photooxidation. PLA showed fine surface pits after 132 days and swelling after 300 days. The carbonyl index (CI) of HDPE and PET showed gradually increase with increasing exposure duration. Conversely, the CI of PP, PS, and PA initially increased, but then tends to decrease or fluctuate. This fluctuation is likely due to the exposure of unoxidized inner layers after the degradation of weathered surface. The fragmentation rates (particles/cm²) of NPs and MPs by photooxidation within five years and subsequent mechanical abrasion (MA) were calculated using a quadratic function. Under photooxidation alone, the order was PET > PS > HDPE > PA > PLA, and with additional MA, PET > PS > PP > PA > PLA. These results provide valuable data for developing plastic pollution management and can be used as essential parameters for developing plastic weathering or fragmentation models.

** This research was supported by the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Ocean and Fisheries (RS-2002-KS221604), Land/sea-based input and fate of microplastics in the marine environment).

Corresponding author Email: soeuneo@kiost.ac.kr, wjshim2000@gmail.com

Polymer-specific microplastics linked to dissolved nitrogen in Wando aquaculture waters

Young Kyoung Song^{p1} and Tae-Hoon Kim^{c2}

¹G-LAMP research institute, Chonnam National University, Gwangju, Republic of Korea ²Department of Oceanography, Faculty of Earth Systems and Environmental Sciences, Chonnam National University, Gwangju 61186, Republic of Korea

Plastic debris, emblematic of the Anthropocene, is increasingly viewed as a dynamic participant in coastal biogeochemistry rather than an inert carrier of contaminants. Seasonal surveys of surface seawater adjacent to aquaculture structures in Wando, South Korea, revealed consistently higher microplastic (MP) concentrations than at nearby general coastal sites. A distinct summer maximum of polyamide-derived MPs coincided with elevated dissolved nitrogen, especially ammonium and dissolved organic nitrogen. Fluorescence metrics indicate that this nitrogen enrichment was decoupled from recent microbial production, consistent with polymer-specific processes contributing to nutrient dynamics. Overall, the data suggest that polymer identity, particularly the seasonal dominance of polyamide, modulates MP-nitrogen coupling in aquaculture-influenced waters, underscoring the value of polymer-resolved monitoring to interpret nutrient signals and to assess ecological risk near farms.

** This research was supported by the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Ocean and Fisheries (RS-2002-KS221604), Land/sea-based input and fate of microplastics in the marine environment).

Corresponding author E-mail: songyk1621@gmail.com / thkim80@jnu.ac.kr

Microplastic aggregation and sinking regulated by the harmful algae Chattonella marina and Heterosigma akashiwo: Implications for vertical transport and resuspension

Kavindu Dhananjaya Sudusinghe^p, Sang Hee Hong, and Seung Ho Baek^c

Ecological Risk Research Department, Korea Institute of Ocean Science and Technology

Aggregation processes of microalgae play a crucial role in regulating the vertical distribution of microplastics (MPs) in marine environments. This study examined how the harmful microalgae Chattonella marina and Heterosigma akashiwo influence the aggregation and sinking dynamics of four types of MPs: low- and high-density polyethylene (PE) spheres, and small and large polypropylene (PP) fragments. For C. marina, low-density PE spheres (PE1.0) exhibited a logistic sinking pattern, reaching a maximum sinking ratio of 9% with a half-saturation time of 13 days. In contrast, small PP fragments showed negligible sedimentation (<1%). Aggregate size, sinking velocity, and MP counts per aggregate did not differ significantly among PE spheres of different densities (P > 0.05). During the decline phase, larger aggregates sank faster, with maximum velocities up to 76.9 m·day⁻¹. A strong positive correlation was observed between C. marina chlorophyll a (Chl. a) concentration and the sinking ratio of PE1.0 (R = 0.92, P < 0.05), suggesting that Chl. a can serve as a proxy for aggregation-inducing substances released during senescence. For H. akashiwo, the sinking of low-density PE spheres also followed a logistic trend, reaching saturation at 28% with a half-saturation time of 9 days. In contrast, small PP fragments showed minimal sinking (<2%), while large PP fragments exhibited almost no sedimentation, highlighting the influence of MP density and size. The sinking velocity of MP aggregates was significantly lower for low-density PE spheres (0.63 mm·s-1) than for high-density PE spheres (0.81 mm·s-1), despite no significant differences in aggregate size or MP abundance per aggregate. Overall, our findings, when integrated with field observations and modeling studies, provide valuable insights into the mechanisms governing MP transport and vertical distribution in marine ecosystems.

** This research was supported by the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Ocean and Fisheries (RS-2002-KS221604), Land/sea-based input and fate of microplastics in the marine environment).

Corresponding author Email: baeksh@kiost.ac.kr

Marine plastic pollution impacts on sea turtles in Korea: current status and causes

Hee-Jin Noh^{p1}, Yelim Moon^{1,2}, Won Joon Shim¹, Gi Myung Han¹, Eun Vit Cho³, and Sang Hee Hong^{c1,2}

¹Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea

²Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea

³Department of Agua, Agua Planet, Yeosu 59744, Republic of Korea

All seven species of sea turtles worldwide are threatened by plastic ingestion, with higher ingestion levels than other marine organisms. Although research on the extent and consequences of plastic ingestion has advanced in recent decades, the reasons why turtles ingest plastics remain largely unresolved. To address this gap, we analyzed the quantity and characteristics of ingested plastics from 112 stranded carcasses collected along the Korean coast since 2012 and conducted behavioral experiments with aquarium-reared turtles. The ingestion analysis revealed clear patterns in the types and colors of plastics consumed, while experiments showed strong responses to both visual cues and olfactory signals. Together, these findings suggest that sea turtles may selectively ingest plastics through multisensory foraging mechanisms. This study provides new insights into the drivers of plastic ingestion and highlights the importance of sensory-based approaches in developing effective management strategies to mitigate marine plastic pollution.

** This research was supported by the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Ocean and Fisheries (RS-2002-KS221604), Land/sea-based input and fate of microplastics in the marine environment).

Corresponding author E-mail: shhong@kiost.ac.kr

특별세션 7 (Special Session 7)

첨단산업•탄소저감•기후변화 대응을 위한 생태평가

일 시: 2025년 10월 24일(금) 09:00 - 11:00

장 소: 그랜드볼룸 (Grand Ballroom)

좌장: 문성대/(주)엔이비

09:00 - 09:15	S7-1	A study on bioluminescence signal measurement methods for monitoring Hazardous and Noxious Substances Chul Woo Park (Dongmoonent Co., Ltd)
09:15 - 09:30	S7-2	인공 전자기장 노출이 둥근성게와 지중해담치 초기 생활사에 미치는 영향 이현배 (㈜엔이비)
09:30 - 10:00	S7-3	심해환경 고농도 이산화탄소 노출에 따른 거미불가사리와 말미잘의 행동학적 영향 고찰 장솔 (㈜엔이비)
10:00 - 10:30	S7-4	아열대 기후하 독소조류 분포 패턴의 데이터 기반 요약과 예측 김종우 (㈜엔이비)
10:30 - 10:45	S7-5	ECOTOX 데이터베이스를 활용한 생태독성 자료 신뢰도 평가의 코드 기반 자동화 황대식 (㈜엔이비)
10:45 - 11:00	S7-6	이차전지 배출수 해양방류의 과학기반 평가와 관리체계 이정운 (㈜엔이비)

A study on bioluminescence signal measurement methods for monitoring Hazardous and Noxious Substances

Chul Woo Park^{p1}, Goeun Yoon¹, Hye Ryeon Song¹, Hoon Choi², Moon Jin Lee², and Dong Kwon Lee^{c1}

¹R&D Center, Dongmoonent Co., Ltd, Seoul 08377 ²Maritime Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering (KRISO), Daejeon 34103

Hazardous and Noxious Substances (HNS) can cause severe damage to human life, the environment, and property if released from marine industrial facilities, highlighting the urgent need for the development of real-time marine monitoring technologies. In this study, we conducted a bioluminescence inhibition assay based on *Aliivibrio fischeri* to compare the performance of photomultiplier tube(PMT) based signal measurement methods and data processing techniques. Two signal processing methods were evaluated, comparator-based pulse counting and pulse integration. The pulse counting method exhibited a tendency to overestimate weak signals and showed nonlinearity, indicating limitations for accurate quantitative measurements. In contrast, the pulse integration method demonstrated high resolution and a linear response even under weak signal conditions, showing superior sensitivity, precision, and reproducibility. These findings confirm that the integration method is more suitable for bioluminescence inhibition assay of *A.fischeri*. Furthermore, the results of this study are expected to contribute significantly to the development of monitoring technologies for toxicity assessment using bioluminescent bacteria against heavy metals and organic pollutants.

** This research was supported by Korea Institute of Marine Science & Technology Promotion(KIMST) funded by the Ministry of Oceans and Fisheries, Korea(RS-2021-KS211535).

Corresponding author E-mail: dklee@dongmoonent.co.kr

인공 전자기장 노출이 둥근성게와 지중해담치 초기 생활사에 미치는 영향

이현배^{p1,2}, 문성대¹, 황대식¹, 강민호¹, 이정석¹, 최태섭^{c1}

¹㈜엔이비 ²인천대학교 해양학과

글로벌 기후위기 대응과 함께 신재생에너지에 대한 관심이 증가하고 있다. 특히 해상풍력 단지 조성이 기존 소규모 단지 조성에서 대규모 단지 조성으로 계획되고 있으며, 이에 따라 생산된 전기를 육상으로 전송하기 위한 전력케이블이 해저면에 설치되면서 인공 전자기장 (Electromagnetic Field)에 대한 해양생태계 교란이 우려되고 있다. 전력케이블은 해저면에 설치되기 때문에 이동성이 낮은 둥근성게(Mesocentrotus nudus)와 부착성인 지중해담치 (Mytilus galloprovincialis)는 케이블 인접 구역에 장기간 체류할 가능성이 커 전자기장에 대 해 고위험군으로 간주된다. 본 연구는 둥근성게와 지중해담치 유생 단계에서 전자기장이 미 치는 영향을 평가하였다. 둥근성게는 속초항 인근 해역에서 채집하였고, 지중해담치는 남해 군 소재의 양식장에서 확보하였다. 실험생물은 신속히 실험실로 이동하여 인위적으로 방정· 방란시켜 수정란을 확보한 후 전자기장에 노출하였다. 둥근성게는 48시간 플루테우스 단계 (Pluteus larvae) 까지, 지중해담치는 72시간 D형 유생 단계(D-shaped larvae)까지 노출하였 다. 노출 결과 전자기장이 증가함에 따라 정상 유생 발생률이 유의(p<0.05)하게 감소하였다. 둥근성게의 경우 금속류인 구리(Cu)와 전자기장에 복합 노출하였을 때 독성반응이 증가하는 상승작용(Synergistic effect)이 관찰되었다. 또한 지중해담치의 경우 전자기장이 노출군에서 D형 유생 단계까지 발생 시간이 지연됨을 확인하였다. 본 연구를 통해 해양무척추동물 초기 단계는 전자기장에 민감하게 반응하며, 이동성이 낮은 저서 무척추동물은 누적 노출 위험이 높아 관리 우선 분류군으로 선정하여 해저케이블의 노선 계획·매설 깊이·차폐 설계를 검토 할 때 분류군별 임계치를 반영한 생태계 보호 기준이 고려가 필요함을 시사한다. 아울러 오 염물질 유입이 쉬운 연안 환경에서 전자기장과 오염물질(중금속 등)의 독성영향을 상승시킬 수 있는지를 규명하기 위해, 표준화된 복합 노출 시험과 전사체 분석(RNA-Seq) 기반의 분 자 기전 연구가 필요하다. 본 연구 결과는 향후 해상풍력 해양이용영향평가 취약 생물종 선 정 및 복합 누적영향평가의 기초자료로 활용될 것으로 기대된다.

** 이 연구는 2025년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(RS-2021-KS211469, 과학기술 기반 해역이용 영향평가기술개발)

교신저자 E-mail: neb.tschoi@gmail.com

심해환경 고농도 이산화탄소 노출에 따른 거미불가사리와 말미잘의 행동학적 영향 고찰

장 솔^P, 문성대, 이정석^C

㈜에이비

기후변화에 대응하기 위한 탄소중립(Net Zero) 전략의 일환으로 이산화탄소 포집·저장 (Carbon Capture and Storage, CCS) 기술이 주목받고 있으며, 국내에서도 동해 가스전을 중 심으로 해저 지중 저장 사업이 추진되고 있다. 그러나 대규모 이산화탄소 주입이 해양 생태 계에 미치는 영향은 아직 충분히 규명되지 않았으며, 특히 심해환경 조건에서 고농도 이산화 탄소 노출에 따른 생물영향과 행동학적 연구가 제한적인 실정이다. 이 연구에서는 동해안 심해 역 환경을 고려하여 거미불가사리(Ophioplocus japonicus)와 풍선말미잘(Stomphia japonica)을 시험대상종으로 선정하였다. 실험은 심해 300미터가 모사 가능한 고압 챔버를 이용하였다. 초기 실험에서 거미불가사리는 수심 10미터 수준, 풍선말미잘은 60미터 수준에서 이산화탄 소 노출에 따른 생존 및 행동학적 영향을 살펴보았다. 노출기간은 48시간동안 수행되었고, 노출과정에 사망한 개체는 없었다. 노출 단계에 촬영된 동영상을 바탕으로 행동학적 영향을 분석하였다. 시험생물에 대해 기존 행동학적 연구가 매우 제한적이라 표준화된 최종측정치가 없기 때문에 여러 가지 시나리오에 따른 최종측정치를 선정하고자 하였다. 거미불가사리의 경 우 절지와 행동패턴을 분석하였고, 풍선말미잘은 촉수 회복, 촉수 움직임, 체벽 긴장도 저하, 기질 부착률 등을 평가하였다. 동일한 생물 분류군에 대해 국내외 문헌을 리뷰하였고, 특히 행 동학적 변화에 적용 가능한 최종측정치들을 정리하였다. 이러한 결과는 이산화탄소 해양 지중 저장시 해저 누출시험을 모사할 수 있는 구체적인 시험방법을 제공할 수 있을 것이다.

** 이 연구는 2025년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(RS-2023-00254680, 해양 CCS 중규모 실증을 위한 해양환경평가 감시 체계 및 기반 기술 개발)

교신저자 E-mail: neb.jslee@gmail.com

아열대 기후하 독소조류 분포 패턴의 데이터 기반 요약과 예측

김종우^P, 황대식, 문성대, 이정석, 한영석^C

㈜에이비

기후변화로 인한 아열대화(subtropicalization)가 가속되면서 아열대에 서식하는 독성(유해) 미세조류의 공간·시간적 거동을 정량적으로 파악하고, 향후 변화를 데이터 기반으로 예측하는 필요성이 커지고 있다. 본 연구는 국가 연안 모니터링 자료(2015 - 2023)를 이용하여 아열대에 주로 서식하며 독소를 가지고 있는 독소조류 25속의 분포 패턴을 표준화하여 제시하고, AI 기반 분석으로 검증 및 예측을 수행하였다. 먼저 위·경도(DMS→십진)와 정점 반올림(소수점 3자리)을 적용하여 관측단위(정점×연도×월)를 정규화하고, (i) 독소 관측비율(관측 대비 독소 검출 비율), (ii) 독소 속 다양도(기간 내 상이한 독소 속 수), (iii) 셀 기반 풍부도 지표(전체/독소 세포수 합)를 정점 기준으로 산출하였다. 이어서 Random Forest·Gradient Boosting 등 앙상블 기법과 정점 그룹 교차검증(GroupKFold)을 통해 분포 패턴을 학습하고, 계절·공간 성분을 반영한단기 예측 모델을 구축하였다. 그 결과, 아열대화 맥락과 부합하는 분포·풍부도의 공간적 그라디언트와 전·후기 대비 변화 신호를 지도 기반으로 제시하였으며, AI 모델은 독소조류 출현과 상대적 풍부도를 안정적으로 재현하고 예측 맵을 생성하였다. 본 연구는 아열대 기후 심화 하에서의 독소조류 현재 분포의 표준화된 요약과 AI 보조 예측 체계를 제시함으로써, 향후 조류경보·위해성 평가 및 모니터링 설계 고도화(패널 정점, 계절 층화, 우선 감시 해역 선정)를 위한 기초를 제공한다.

교신저자 E-mail: neb.yshan@gmail.com

ECOTOX 데이터베이스를 활용한 생태독성 자료 신뢰도 평가의 코드 기반 자동화

황대식^P, 문성대, 이정운, 박혜민, 이정석^C

㈜엔이비

화학물질의 환경 위해성 평가는 인간과 생태계 건강 보호를 위해 중요한 과제이다. 미국 환경 보호청(EPA)의 ECOTOX Knowledgebase와 같은 대규모 생태독성 데이터베이스는 증거 기반 평가에 필요한 핵심 자원을 제공한다. 하지만 데이터의 양이 방대해지면서 전문가가 개별 연구 의 신뢰도를 직접 평가하는 과정이 전체 분석의 효율성을 저해하는 요인이 되고 있다. 이에 신 속하고 객관적인 대규모 자료 평가 방법론 개발의 필요성이 제기된다. 본 연구는 ECOTOX 데 이터베이스에 수록된 생태독성 시험 결과를 활용하여, 체계적인 평가 방법론인 CRED(Criteria for Reporting and Evaluating Ecotoxicity Data) SIFT (Stepwise Information-Filtering Tool) 의 핵심 기준을 코드 기반으로 자동 스크리닝하는 적용성을 검토하고 그 유효성을 분석했다. ECOTOX 데이터 필드 분석 결과, CRED의 핵심 신뢰도 항목(예: 시험 지침, 대조군, 농도 분석 유무) 상당수가 자동화된 방식으로 평가 가능함을 확인했다. 특히 시험법(Test Method), 화학물 질 분석(Chemical Analysis), 대조군(Control) 관련 필드는 신뢰도 높은 데이터를 1차적으로 선 별하는 데 중요한 요소로 작용했다. 자동화 스크리밍을 통해 잠재적으로 신뢰도가 높은 데이터 군을 신속하게 식별하여, 기존 수동 평가 방식 대비 분석 시간을 효율적으로 단축할 수 있었다. 반면, 시험 조건의 미묘한 차이나 비표준 시험법의 해석 등 일부 항목은 전문가의 최종 검토가 여전히 중요한 것으로 나타났다. 본 연구 결과는 대규모 생태독성 데이터의 신뢰도 평가를 가속 화하고, 증거 기반 화학물질 관리 및 위해성 평가 전략 수립에 기여할 것으로 기대된다.

교신저자 E-mail: neb.jslee@gmail.com

이차전지 배출수 해양방류의 과학기반 평가와 관리체계

이정운^P, 박혜민, 이정석, 문성대^c

㈜엔이비

최근 이차전지 산업의 급성장과 함께 고염·특이 이온 구성을 지닌 산업폐수가 이슈화되고 있다. 이러한 배출수는 공공폐수처리 연계와 해양방류 과정에서 관리 리스크를 초래하고 있으며, 이에 대응하기 위해 최근 환경부·국립환경과학원·한국환경공단 등이 다수의 연구·조사·실증 용역을 수행 중이다. 본 발표는 포항·군산·광양 등 해안 산업권역에서 추진된 과업을 검토한 내용으로, 이차전지 배출수의 염 농도 상승과 이온 불균형이 두드러지며, 배출허용기준에 부재한 리튬·코발트·황산이온이 현장에서 반복적으로 문제로 제기되고 있음을 보여준다. 한편, 다중 생물종을 활용한 생태독성 평가는 염·이온 기원 독성을 확인하는 데 유효하며, 단순 염분 보정보다해수 이온 비율 매칭과 황산이온 질량부하 관리가 독성 저감과 생물반응 예측의 정확도를 높이고 있다. 이차전지 배출수가 해양으로 최종 방류될 경우 사전 해역조사-혼합·확산 진단-사후 모니터링으로 이어지는 해역기반 관리체계가 필수적이다. 종합하면, 향후 정책·제도는 배출허용기준의 신규 항목 도입(리튬·코발트·황산이온), 시료 전처리와 이온비 기준의 표준화, 해양종을 포함한 생태독성 평가가 상시 적용을 제도화할 필요가 있다. 본 발표는 이러한 정책·기술 과제를체계화해 가이드라인 개정과 실무 의사결정의 근거를 제시하고자 한다.

교신저자 E-mail: neb.sdmoon@gmail.com

특별세션 8 (Special Session 8)

생태정보학과 다중생태계 빅데이터-육상과 수생태 사례

일 시: 2025년 10월 24일(금) 09:00 - 11:00

장 소: 스위트홀 (Suites Hall)

좌장: 홍성원/경북대학교

09:00 - 09:20	S8-1	Machine learning optimization of bivalve-based CROM systems for water quality improvement Hyo Gyeom Kim (Korea Environment Institute)
09:20 - 09:40	S8-2	관상어의 개체군 크기에 따른 행동 특성 분석: 비디오 트래킹 기반 실험 연구 조현빈 (부산보건대학교)
09:40 - 10:00	S8-3	Applying machine learning to regional-scale landscape analysis: Ecological insights from South Korea Kyoung-Ho Kim (Korea Environment Institute)
10:00 - 10:15	S8-4	농경지 그물망에 의한 야생동물 피해 저감 연구 우동걸 (국립생태원)
10:15 - 10:30	S8-5	Assessment of distance to road and seasonal effects on long-tailed goral (<i>Naemorhedus caudatus</i>) density based on spatially explicit capture-recapture (SECR) Gwangyeon Kim (Kyungpook National University)
10:30 - 10:45	S8-6	Spatial distribution and environmental drivers of Bawean deer and small to medium-sized mammals in the Bawean Island protected area Agus Ariyanto (Kyungpook National University)
10:45 - 11:00	S8-7	Eco.AI: 야생동물 모니터링을 위한 이미지 데이터 분석의 새로운 접근 김영민 (국립생태원)

Machine learning optimization of bivalve-based CROM systems for water quality improvement

Hyo Gyeom Kim^{p1} and Baik-Ho Kim^{c2}

¹Environmental Assessment Group, Korea Environment Institute, Sejong 30147, Korea ²Department of Environmental Science, Hanyang University, Seoul, South Korea

Effective strategies for improving water quality in eutrophic reservoirs require integrating biological processes with advanced analytical tools. In this study, we applied a continuous removal of organic matter (CROM) system using two native freshwater bivalves, Unio douglasiae and Anodonta woodiana, to evaluate their combined capacity for seston removal and nutrient regulation. Laboratory-scale experiments were conducted under varying flow rates, mussel densities, and sediment conditions. Water quality indicators such as suspended solids, chlorophyll-a, nitrogen, and phosphorus were measured. Results demonstrated significant reductions in suspended particles and chlorophyll-a, with varying nutrient release patterns depending on flow velocity and stocking density. To identify optimal operational conditions, machine learning models were trained on experimental datasets, revealing that mussel density and flow rate were the most influential factors driving water quality improvement. This integrative approach highlights the potential of combining native bivalve filtration with data-driven optimization to design efficient, eco-friendly systems for managing eutrophic lakes.

Corresponding author E-mail: tigerk@hanyang.ac.kr

관상어의 개체군 크기에 따른 행동 특성 분석: 비디오 트래킹 기반 실험 연구

서종모¹, 허승빈², 조현빈^{pc1}

¹부산보건대학교 ²부산대학교 생명과학과

관상어 시장은 전 세계적으로 성장하고 있으며, '반려어'로서의 인식이 확대되고 있다. 시장의 현황 및 양식 기술 등 산업적 연구뿐만 아니라, 수출입 증가에 따른 현지 개체 감소와 외래종 도입 등 다양한 연구가 활발히 이어지고 있으나 사육환경 내에서 연구는 상대적으로 조명되지 않았다. 본 연구는 대중적인 두 종의 관상어를 대상으로 개체 및 개체군 단위에서의 실험을 통해 그 차이를 분석하였고, 대상은 국내 주요 판매 관상어 중 개인 영역을 강하게 구축하는 것으로 알려진 시클리드과의 Platinum angelfish (Pterophyllum sp.)와 무리행동을 하는 것으로 알려진 Neon tetra (Paracheirodon innesi)로 선정하였다. 실험은 자체 제작한 어류관측기기를 활용하여 각 어종에 대해 1마리 및 15마리의 조건으로 실시되었으며, 각 2회 반복되었다. 각각의 실험 그룹은 실험수조로 이동되어 30분 적응 후 1시간 촬영을 진행하였다(1920×1080 pixel, 30fps). 촬영된 영상은 20분씩 분할하여 24개 영상이 ConductVision Tracking and Analysis Software (Conduct Science Inc.)를 사용하여 분석되었으며, 프로그램이 생성한 좌표에 기반하여 개체의 움직임 및 행동 특성을 반영하는 총 이동거리, 평균 속력, 밀집도, 방향 전환도 등의 지표를 산출하였다. 산출된 행동학적 지표들은 관상어의 종과 개체수에 따라 활동시간, 속도, 가속도 등의 활동 지표 및 집단행동 (Collective behavior) 관점에서 유의한 차이를 보였다. 이러한 결과는 관상어의 가치 평가뿐 아니라, 효과적인 사육 관리와 생태학적 이해를 위한 기초 자료로서 의미가 있으며, 관상어 관련 후속 연구 및 산업 발전에 기초연구로서 중요한 가치를 지닐 것으로 판단된다.

교신저자 E-mail: prozeva@bhu.ac.kr

Applying machine learning to regional-scale landscape analysis: Ecological insights from South Korea

Kyoung-Ho Kim^{pc}

Korea Environment Institute, Sejong, 30147, Korea

Traditional analytical approaches in landscape ecology struggle to capture the non-linear and multi-scale interactions that arise as human impacts on ecosystems become increasingly complex and spatially heterogeneous. This presentation introduces a suite of machine learning (ML) techniques designed to enhance ecological pattern detection and support hypothesis generation in these human-modified landscapes. Focusing on South Korea as a case study, we demonstrate the methodological advantages of combining Self-Organizing Maps (SOM), Random Forest, and Bayesian networks with spatial heterogeneity metrics like Local Indicators of Spatial Association (LISA) and Gray-Level Co-occurrence Matrices (GLCM). These techniques enable flexible, topology-preserving dimensionality reduction, robust classification in high-dimensional space, and the probabilistic modeling of indirect ecological effects. Through applications in land cover transition analysis and spatial pattern detection, we illustrate how machine learning approaches can complement traditional ecological methods by revealing latent structures and emergent patterns, ultimately expanding the analytical toolkit available for understanding complex human-environment interactions in contemporary landscapes.

Corresponding author E-mail: khkim@kei.re.kr

농경지 그물망에 의한 야생동물 피해 저감 연구

우동걸^{pc}, 박희복, 구슬기, 유재현

국립생태원 멸종위기종복원센터

농작물 보호를 위해 설치되는 농경지 그물망(특히 해태망)은 산양(멸종위기야생생물 1급)을 비롯한 노루, 고라니 등 중대형 포유류의 얽힘·폐사를 초래하여 생태·윤리적 문제가 제기되고 있다. 이에 농경지 그물망 설치 현황과 야생동물 피해를 파악하고, 생태 친화적이며 경제성이 높은 대체 울타리 규격을 제시하고자 하였다. 현장 조사 결과, 경북 영양군 등 산림 인접 농경지에서 해태망 설치 비율이 50% 이상으로 나타났으며, 2019-2024년 사이 산양 28개체의 걸림 사고(폐사 21건)를 확인하였다. 고라니·노루를 대상으로 재절·망목 크기를 달리한 12종 울타리의 안전성, 월장 실패율, 얽힘 위험을 CCTV·센서카메라로 정량 평가하였다. 실험결과 망목 크기가 크며, 망 두께가 가늘수록 동물의 얽힘 위험도는 높아졌다. 철제·폴리망 등 대체재는 월장 억제 효과가 우수하면서도 얽힘 위험이 유의하게 낮았다. 본 연구에서는 농경지 그물망 피해의 정량적근거와 안전한 대체 울타리 규격을 제시함으로써, 농업 생산과 야생동물 보전의 상생 모델을 제안하고자 하였다. 이를 통해 향후 지자체 보조사업 개선 및 ESG 연계 확대 등 농경지 야생동물 피해 저감 정책 수립의 기초 자료로 활용될 수 있다.

교신저자 E-mail: martes@nie.re.kr

Assessment of distance to road and seasonal effects on long-tailed goral (*Naemorhedus caudatus*) density based on spatially explicit capture-recapture (SECR)

Gwangyeon Kim^{p1}, Sanghyeon Oh¹, Donggul Woo^{c2}, and Sungwon Hong^{c1}

¹Department of Animal Science and Biotechnology, Kyungpook National University,
Sangju 37224, Republic of Korea

²Research Center for Endangered Species, National Institute of Ecology,
Yeongyang, Gyeongbuk 36531, Republic of Korea

The long-tailed goral (Naemorhedus caudatus), an East Asian bovidae species classified as Vulnerable (VU) on the IUCN Red List, shows reduced winter survival after heavy snowfall due to food shortages In Korea, monitoring suggests 2,000 individuals, yet studies quantifying population density by identifying individuals from morphology are rare. To evaluate environmental factors influencing density and seasonal survival, we analyzed camera-trap data from general forests and road-adjacent forests. Individuals were identified using traits, and we fit spatially explicit capture–recapture (SECR) and open-population capture–recapture (openCR) models. We identified 136 individuals; antler morphology was the most reliable criterion, and juveniles with uncertain individuals were excluded. In road-adjacent forests, density increased nearer roads, while season had no significant effect on survival; in general forests, winter survival was lower than in summer, and distance to roads had no significant effect. Our study provides a practical, noninvasive framework for estimating goral density and identifying conservation threats, and suggests conservation strategies according to the environment.

** This work was supported by the Endangered Species Restoration Center, National Institute of Ecology (NIE-2024-C-08), and by the National Research Foundation of Korea (NRF) through the Sejong Science Fellowship (NRF-2021R1C1C2004162).

Corresponding author E-mail: shong@knu.ac.kr / birdwatcher@hanmail.net

Spatial distribution and environmental drivers of Bawean deer and small to medium-sized mammals in the Bawean Island protected area

Agus Ariyanto^{p1} and Sungwon Hong^{c2}

¹Department of Ecology and Environmental System, Kyungpook National University, Sangju 37224, Korea ²Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea

Environmental gradients uniquely shape small-island biodiversity, hindering prediction of the terrestrial mammal distributions. We hypothesized that island-scale landscape variables better explain species occupancy and co-occurrence than protected-area status, because limited extent and human use can decouple reserves from primary habitats. Using 30 camera-trap stations (5,829 trap-days) in the Bawean Island Protected Area, we surveyed Bawean deer, Bawean warty pig, long-tailed macaque, common palm civet, and Sunda porcupine with single- and multi-species occupancy models. Deer occupancy increased near rivers and was higher where protected-area coverage was lower, indicating that reserves do not encompass primary deer habitats. Porcupines were more likely at sites farther from roads, whereas warty pigs and macaques showed no significant effects. Protected-area coverage coefficients were consistently negative across species pairs, suggesting that co-occurrence is driven more by landscape features than by reserve status. Findings support redesigning and/or strengthening reserves to align with occupancy hotspots.

Corresponding author E-mail: shong@knu.ac.kr

Eco.AI: 야생동물 모니터링을 위한 이미지 데이터 분석의 새로운 접근

김영민

국립생태원 멸종위기종복원센터 포유류복원팀


카메라트랩은 비침습적인 방식으로 야생동물의 생태를 관찰할 수 있어 현대 생태 연구의 필수 적인 도구 자리매김하며 장기 생태 모니터링 연구의 기반을 제공한다. 그러나 이러한 장점에도 불구하고, 수백만 장에 달하는 방대한 이미지 데이터를 연구자가 수동으로 분석하는 과정은 막 대한 시간과 자원이 소요되어 연구 확장의 주요한 제약으로 작용한다. 최근에는 이를 해결하기 위해 이미지 데이터의 처리 및 해석을 위한 딥러닝 기반 자동화 기술이 유망한 해결책으로 부상 하였다. 본 연구는 생태 연구와 보전 활동을 지원하기 위해 카메라트랩 이미지의 탐지, 분류, 관 리 과정을 효율화하는 통합 딥러닝 기반 시스템 Eco.AI를 제안하였다. 국내 다양한 서식지에서 수집한 데이터를 기반으로 대규모 '한국형 야생동물 학습 데이터셋'을 구축하였고, 기존 CNN의 한계를 보완할 수 있는 새로운 아키텍처의 분류 모델을 구성하였다. Eco.AI 시스템은 2단계의 체계적인 파이프라인으로 작동한다. 1차적으로 범용 객체 탐지 모델인 MegaDetector를 활용하 여 야생동물, 사람, 차량을 식별해 객체가 포함된 유효 이미지만을 필터링하며, 2차적으로는 YOLOv5를 기반으로 국내 환경에 최적화된 고성능 합성곱 신경망(CNN) 기반의 종 분류 모델 을 통해 정밀한 분석을 수행한다. 독립된 검증 데이터셋 평가 결과, 제안 모델은 4개의 학습 종 (멧돼지 94.0%, 사슴류 96.4%, 산양 97.6%, 기타 99.2%)에 대해 96.83%의 높은 전체 정확도 를 달성하며, 국내 환경에서의 뛰어난 분류 성능과 높은 신뢰도를 입증하였다. 또한 글로벌 범용 모델(Wildlife Insight)과의 비교 분석을 통해 국내 고유종 인식에서 뚜렷한 우위를 보였으며, 공 백 이미지에서의 오검출률(False Positive Rate)도 낮아 데이터 정제 과정의 효율성을 향상시킬 수 있음을 확인하였다. 본 연구의 결과는 단순한 기술적 성공을 넘어, AI 기반의 자동화 기술이 야생동물 모니터링과 생물다양성 보전에 제공하는 실질적 가치를 실증적으로 증명했다는 점에 서 중요한 학술적, 실용적 시사점을 가진다.

교신저자 E-mail: ymin@nie.re.kr

2025 한국환경생물학회 정기학술대회

구 두 발 표

일반 구두 발표

일 시: 2025년 10월 23일(목) 09:00 - 10:30

장 소: 그랜드볼룸 Grand Ballroom)

좌장: 서종복/한국기초과학지원연구원

09:00 - 09:20	GP-01	우포늪 수중 퇴적토의 탄소 저장량 및 미세조류 기여의 정량적 분석 이상득 (국립낙동강생물자원관)
09:20 - 09:40	GP-02	Core microbiota drives host-specific growth enhancement: evidence in a harmful algal bloom causing dinoflagellate <i>Prorocentrum lima</i> Joo-Hwan Kim (Hanyang University)
09:40 - 10:00	GP-03	국립공원 생태계교란 어종 관리 전략 강화를 위한 환경유전자 적용 및 조사 모니터링 고도화 방안 김정은 (국립공원공단)
10:00 - 10:20	GP-04	Three-dimensional sampling framework reveals plant-mediated drivers of microbial spatial heterogeneity and niche differentiation in natural ecosystems Seong-Jun Chun (National Institute of Ecology)

우포늪 수중 퇴적토의 탄소 저장량 및 미세조류 기여의 정량적 분석

이상득^{pc1}, 권대률¹, 박미례¹, 구민화²

¹국립낙동강생물자원관 원생생물연구부 ²한양대학교 해양융합과학과

국가 탄소중립 실현을 위해 산림 외 신규 탄소흡수원 확보가 절실한 가운데, 본 연구는 내륙습지의 수중 퇴적환경이 가지는 탄소저장 기능을 과학적으로 규명하고자 수행되었다. 경상남도 창녕군에 위치한 우포늪을 대상으로, 수중 퇴적토의 전체 탄소 저장량과 연간 저장량을 정량화하고, 탄소저장 기여 생물로서의 담수 미세조류(특히 돌말류)의 역할을 분석하였다. 그 결과, 우포늪에는 총 약 11.6만 톤의 탄소(약 42.4만 톤 CO2eq)가 저장되어 있으며, 이는 자동차 약 28만 대의 연간 배출량을 상쇄하는 수준인 것으로 산출되었다. 또한 연대분석을 통해 매년 약 190톤의 탄소가 새롭게 저장되고 있음이 밝혀졌으며, 이는 약 464대의 자동차 배출량에 해당한다. 특히 퇴적탄소의 93%는 광합성 기반 미세조류 유래로, 이 중 다수는 돌말류 기원임이 확인되었다. 본 연구는 내륙습지가 수중 기반의 탄소흡수원으로서 가질 수 있는 정량적 가능성을 제시하며, 국가 온실가스 인벤토리 개선과 흡수원 다변화 정책 수립에 중요한 기초자료가 될 것으로 판단된다.

교신저자 E-mail: diatom83@nnibr.re.kr

Core microbiota drives host-specific growth enhancement: evidence in a harmful algal bloom causing dinoflagellate *Prorocentrum lima*

Joo-Hwan Kim^{p1}, Eui Seong Kim¹, Jeong Won Kim¹, Naeun Yun¹, Jajoon Koo¹, Jaeseong Kim², Tae-Gyu Park³, Seok Hyun Youn³, and Bum Soo Park^{c1}

¹Department of Life Science, College of Natural Sciences, Hanyang University,
Seoul 04763, Republic of Korea

²Water & Eco-Bio. Co. Ltd., Gunsan 54156, Republic of Korea

³Oceanic Climate & Ecology Research Division, National Institute of Fisheries Science,
Busan 46083, Republic of Korea

Harmful algal blooms (HABs) are increasing in both frequency and severity under the influence of climate change, yet the biological mechanisms regulating bloom-forming phytoplankton remain poorly understood. Although host-associated microbiota have been shown to influence the growth and physiology of various algal taxa, experimental validation of these effects is still limited in dinoflagellates—particularly among toxic and benthic species. Here, we investigated the microbiota of six geographically distinct strains of the harmful benthic dinoflagellate Prorocentrum lima and identified core bacterial taxa shared across strains. Microbiota transplantation into an axenic P. lima strain revealed that most donor consortia significantly enhanced early-phase growth, increasing daily cell densities by 5.2-8.4% compared to axenic controls. Co-culture experiments with *Marinobacter adhaerens*, a core taxon isolated from P. lima, resulted in a greatly increased specific growth rate—up to 53.4% higher than the axenic control—demonstrating a strong growth-promoting effect specific to P. lima, but not observed in other phytoplankton species, suggesting a degree of host specificity. These results provide causal evidence that specific bacterial lineages closely associated with toxic dinoflagellates can promote their proliferation. Our findings highlight the ecological significance of dinoflagellate-associated core microbiota and offer new directions for microbiome-informed strategies in HAB monitoring and management.

Corresponding author E-mail: parkbs@hanyang.ac.kr

국립공원 생태계교란 어종 관리 전략 강화를 위한 환경유전자 적용 및 조사 모니터링 고도화 방안

김정은 pc^{1} , 문운 J^{4} , 장지은 J^{1} , 이재호 J^{2} , 유태임 J^{2} , 임우찬 J^{3}

¹국립공원공단 국립공원연구원 ²국립공원공단 중부지역본부 ³국립공원공단 ⁴엔솔에코

국립공원에 서식하는 생태계교란 어종 배스를 효율적으로 관리하기 위해 계룡산국립공원 용동 저수지를 대상으로 환경 DNA를 활용한 조사 모니터링을 시범 적용하였다. 환경 DNA를 이용 한 조사 결과의 유효성을 검증하기 위해 전통적 어류 생물다양성 모니터링도 같이 수행하였다. 시료는 호소 내 300m 구간별로 6개 정점을 선정하였으며, 2025년 5월과 9월 2회 채집하였다. 환경 DNA는 현장에서 각 지점별 수면으로부터 5cm 이하의 표층에서 1L씩 채수하였으며, 채집 한 모든 시료는 현장에서 0.45 μm membrane filter (Sterivex, Germany)으로 여과 후 4℃ 이하 의 온도에서 보관하여 실험실로 운반하였다. 환경 DNA 추출은 DNeasy Blood and Tissue Kit(Qiagen, USA)를 이용하여 제조사의 protocol에 따라 진행하였다. 추출된 DNA는 ND-1000 spectrophotometer(NanoDrop Technologies, USA)를 이용하여 농도 측정 후 -80℃ 초저온냉동 고에 보관하였다. 전통적 어류 조사는 환경부 호소 조사 매뉴얼에 따라 투망, 족대, 자망을 사용 하였으며, 추가로 주낙을 활용하여 어구별 포획 효율성을 검토하였다. 전통적 조사와 과거 참고 문헌을 확인한 결과 12종이 확인되었으며, 환경 DNA 1회 분석 결과 18종으로 환경 DNA 조사 가 전통적 어류 조사 결과보다 6종 추가로 확인되었다. 현장조사 시 관찰되었으나 환경 DNA에 서 검출되지 않은 위음성은 2종이며, 현장조사 시 관찰되지 않았으나 환경 DNA에서 검출된 위 양성은 8종으로 확인되었다. 환경 DNA가 종 탐지에서 민감도가 높았으나 근연종에 대한 명확 한 종 동정에 한계가 있는 것으로 나타났다. 생태계교란 어종은 번식력이 높고 환경 적응성이 뛰어나 한번 유입되면 단시간 내 정착 및 확산하여 완전한 제거가 거의 불가능에 가까워 현실 적인 생태계 관리 모니터링이 어려운 실정이다. 특히, 광범위한 수역 전체를 정밀하게 조사하 기 어렵고 생태적 이해와 포획을 위한 높은 숙련도를 요구하는 전문인력이 필요한 것을 고려했 을 때, 단순 조사 모니터링으로는 근본적인 개체군 억제 관리가 어려울 것으로 판단된다. 본 연 구는 기존 생태계교란 어종 포획 방법과 환경 DNA 조사 방법을 종합적으로 비교·분석한 것으 로, 향후 국립공원 맞춤형 생태계교란 어종 관리 전략 강화를 위한 좋은 기초 자료가 될 것으로 판단된다.

교신저자 E-mail: jeongeun@knps.or.kr

Three-dimensional sampling framework reveals plant-mediated drivers of microbial spatial heterogeneity and niche differentiation in natural ecosystems

Seong-Jun Chun^{pc}

LMO Team, National Institute of Ecology, Seocheon 33657, Korea

Understanding how microbial communities are spatially structured in relation to their ecological niches is essential for elucidating the mechanisms of interactions among diverse organisms. Here, we present a novel three-dimensional (3D) sampling framework to investigate plant-mediated influences on microbial spatial dynamics and niche differentiation within natural ecosystems. Systematic mapping of microbial communities across both horizontal and vertical dimensions revealed that overall microbial diversity, particularly among eukaryotic taxa, increased more than ten-fold compared to conventional single-grid sampling. This highlights the importance of spatial heterogeneity in shaping microbial community dynamics. Furthermore, the 3D framework enabled the identification of taxa specifically associated with individual plant species, providing insights into plant-microbe interactions, pathogen distribution, and ecological consequences of plant-driven effects on local microbial assemblages. These findings demonstrate that the 3D sampling framework offers a reproducible and scalable methodology for exploring microbial spatial heterogeneity, pathogen ecology, and ecological niche differentiation in natural environments.

** We would like to thank the National Institute of Ecology (NIE) funded by the Ministry of Environment (MOE) of the South Korea (Grant Number: NIE-A-2025-04).

Corresponding author E-mail: sjchun@nie.re.kr

신진연구자 구두발표

일 시: 2025년 10월 23일(목) 09:00 - 10:30

장 소: 스위트홀 (Suites Hall)

좌장: 기	장서/싱	
からなっ フト	ᄿᄭᄼ	

09:00 - 09:18	YS-01	Microalgal and bacterial diversity in rainwater Minseok Jeong (Pukyong National University)
09:18 - 09:36	YS-02	Threshold-based analysis of eutrophication dynamics in a semi-enclosed bay: The dominant role of dissolved inorganic nitrogen in Masan Bay, South Korea (2010-2015) Yejin Kim (Korea Institute of Ocean Science & Technology)
09:36 - 09:54	YS-03	Bioassay-guided machine learning framework for robust detection of salinity interference in freshwater toxicity evaluation Hojun Lee (Ghent University Global Campus)
09:54 - 10:12	YS-04	Comparative study on the impact of cryoprotectants on the toxicological response of <i>Aliivibrio fischeri</i> Byeong Hun Han (Dongmoonent Co., Ltd)
10:12 - 10:30	YS-05	Molecular phylogeny and taxonomic resolution of desmidiales in Korea using plastid genes from culture strains Jae Hak Lee (Nakdonggang National Institute of Biological Resources)

Microalgal and bacterial diversity in rainwater

Minseok Jeong^{p1}, Kyong Ha Han², and Hyeon Ho Shin^{c1}

¹Division of Fisheries Life Science, Pukyong National University, Busan, Republic of Korea ²Department of Life Science, Hanyang University, Seoul, Republic of Korea

Rainfall can play a significant role in dispersing microorganisms into new environments. However, the diversity of microalgae and bacteria introduced through rainwater remains largely unexplored. In this study, rainwater was collected using sterile containers installed immediately before each rainfall event and replaced daily according to precipitation volume. Microorganisms were isolated, with bacterial strains classified based on 16S rRNA gene sequences and microalgal strains identified using morphological characteristics and molecular data from small subunit (18S) rDNA and ITS sequences. A total of 52 bacterial strains were cultured and identified as 23 species. Seasonal variation was observed, with *Pantoea* species predominantly detected in spring, Burkholderia species in summer, and Pseudomonas species present across all seasons. In addition, 24 microalgal strains were established, all of which belonged to green algae. These strains were classified into terrestrial taxa (Apatococcus sp., Elliptochloris antarctica, E. subsphaerica, Klebsormidium sp., Parietochloris bilobata, Symbiochloris irregularis), aquatic taxa (Desmodesmus pleiomorphus, Haematococcus lacustris), and taxa inhabiting both terrestrial and aquatic environments (Neocystis mucosa, Coccomyxa polymorpha, Coccomyxa sp.1, Coccomyxa sp.2). In particular, Apatococcus sp., Coccomyxa sp.1, and Coccomyxa sp.2 formed distinct lineages in the phylogenetic tree, suggesting previously unrecognized species diversity in atmospheric microalgae. These results provide evidence of both bacterial and microalgal taxa associated with rainfall and indicate that atmospheric deposition represents a potential source of microbial diversity.

Corresponding author E-mail: shh961121@pknu.ac.kr

Threshold-based analysis of eutrophication dynamics in a semi-enclosed bay: The dominant role of dissolved inorganic nitrogen in Masan Bay, South Korea (2010-2015)

Yejin Kim^{p1}, Dongseon Kim², Young-Ok Kim³, Moonho Son⁴, Bora Lee¹, and Seung Ho Baek^{c1,5}

¹Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje 53201

²Marine Environment Research Department, Korea Institute of Ocean Science & Technology, Busan 49111

 Ocean Climate Response and Ecosystem Research Department, Korea Institute of Ocean Science & Technology, Busan 49111
 Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085

⁵Department of Ocean Science, University of Science and Technology, Daejeon 34113

Eutrophication in semi-enclosed coastal systems remains a concern because restricted circulation and sustained nutrient inputs promote water-quality degradation. We applied a threshold-based analysis to seasonal monitoring from Masan Bay, South Korea (2010–2015). Eutrophication status was quantified with a composite Eutrophication Index (EI) integrating COD, dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP). While COD was relatively stable, EI rose significantly over time (p < 0.05). Segmented regression revealed two DIN breakpoints (8.74 and 18.9 μM) above which EI increased sharply; DIN explained the largest share of EI variability (52.7%), exceeding DIP and COD. High EI (EI > 17.05) occurred most often in summer–autumn at inner-bay stations with weak circulation. Concurrently, total phytoplankton abundance declined (p < 0.01), and community composition shifted from Bacillariophyceae to Dinophyceae. This shift aligned with nutrient imbalance and oxygen stress: phosphorus limitation and nitrate enrichment favored Dinophyceae, and hypoxia further supported their prevalence. DIN-based thresholds therefore capture eutrophication risk and support management frameworks that jointly track nutrient and biological indicators.

** This research was supported by the Korea Institute of Ocean Science and Technology (KIOST) under the project "Development of Technology for Impact Assessment of Marine Plastic Debris on Marine Ecosystem" (PEA0304).

Corresponding author E-mail: baeksh@kiost.ac.kr

Bioassay-guided machine learning framework for robust detection of salinity interference in freshwater toxicity evaluation

Hojun Lee^{pc1,2,3}, Taejun Han^{1,2,3}, and Jihae Park^{c1,2,3,4}

Salinity interference remains a critical obstacle in freshwater ecotoxicity testing, as it can exaggerate toxicity responses and obscure the distinction between chemical-driven effects and salinity-induced stress. Such misinterpretations complicate regulatory practice, potentially leading to incorrect wastewater classification and ineffective management strategies. To address this issue, we established a bioassay-coupled machine learning (ML) framework designed to identify and classify salinity-induced interference. The approach integrated toxicity unit (TU) data from Daphnia magna, Lemna minor, and the salinity-resilient macroalga Ulva australis. Comparative TU profiles underscored U. australis as a stable reference species capable of separating intrinsic chemical toxicity from salinity-driven physiological artifacts. Among the models tested, Random Forest (RF) outperformed others and was further optimized. A streamlined five-variable model achieved perfect classification accuracy and yielded a higher area under the ROC curve (0.889) than the full-feature model (0.867), offering a practical and field-adaptable solution. Shapley additive explanations revealed dissolved oxygen, pH, and trace metals (Cu, Zn, Cr) as the most influential predictors. By combining bioassay data with interpretable ML, this framework provides a scalable and reliable tool for routine monitoring, strengthening regulatory decision-making by proactively detecting and quantifying salinity interference.

Corresponding author E-mail: Hojun.Lee@ugent.be

¹Marine@UGent Korea, Ghent University Global Campus, Incheon 21985, Republic of Korea ²Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Incheon 21985, Republic of Korea

³Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium

⁴Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, Incheon 21985, Republic of Korea

Comparative study on the impact of cryoprotectants on the toxicological response of *Aliivibrio fischeri*

Byeong Hun Han^{p1}, Chul Woo Park¹, Hye Sung Kim², Eun Tae Hwang², Hyun Woo Park², and Dong Kwon Lee^{c1}

¹R&D Center, Dongmoonent Co., Ltd, Seoul 08377 ²Environmental & Bio Division, FITI Testing & Research Institute, Chungcheongbuk-do 28115

Aliivibrio fischeri has been widely employed as a representative bioindicator for assessing the acute toxicity of harmful substances in aquatic environments. To ensure the consistency of performance, the bacteria are typically used in a freeze-dried state. In particular, A. fischeri must be applied for toxicity assay without residual cryoprotectant components interacting with test chemicals in ways that could distort their toxic effects. In this study, commonly used cryoprotectants (e.g., skim milk, trehalose, glucose) were combined in different formulations to compare their effects on luminescence emission. Furthermore, three types of toxicants—an oxidizing agent (K₂Cr₂O₇), a heavy metal (ZnSO₄·7H₂O), and an organic pollutant (3,5-DCP)—were tested to evaluate differences in sensitivity. Freeze-dried bacteria were reactivated and subjected to toxicity assays, in which bioluminescence inhibition was used as a key indicator. The analysis confirmed that cryoprotectant composition can influence bacterial responses to certain toxicants, suggesting that toxicity assays conducted on identical samples may yield divergent outcomes depending on the cryoprotectant used.

** This work was supported by project for Collabo R&D between Industry, University, and Research Institute funded by Korea Ministry of SMEs and Startups in 2025. (RS-2025-02309158)

Corresponding author E-mail: dklee@dongmoonent.co.kr

Molecular phylogeny and taxonomic resolution of desmidiales in Korea using plastid genes from culture strains

Jae Hak Lee^{p1}, Ga Yeong Jeon^{2,3}, Bok Yeon Jo¹, Yu Ho Kim¹, Yeong Chae Yoo^{2,3}, Eu Jin Chung¹, Ji Young Moon¹, Eun Chan Yang^{c2,3}, and Seung Won Nam^{c1}

¹Freshwater Bioresources Culture Collection (FBCC), Nakdonggang National Institute of Biological Resources, Sangju 37182, Korea ²Ocean Climate Response & Ecosystem Research Department, Korea Institute of Ocean Science & Technology, Busan 49111, Korea ³Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea

Desmidiales (Conjugatophyceae, Charophyta) are widely distributed in freshwater ecosystems and particularly diverse in acidic wetlands, lakes, swamps, and peat bogs. Their distinctive morphology with symmetrical semicells and high plasticity often complicates species-level identification. In Korea, 832 species have been reported, yet phylogenetic studies remain limited. This study aimed to resolve species-level relationships within Desmidiales using culture strains from the Freshwater Bioresources Culture Collection (FBCC). Morphological traits, ecological data, and original descriptions were integrated with molecular analyses. A total of 352 new plastid gene sequences were generated across 12 loci: accD (30), atpA (42), atpB (22), ndhH (37), petA (37), psaA (32), psbA (44), psbC (1), psbD (39), rbcL (40), rpl2 (19), and rpoB (9). psbA showed the highest proportion of conserved sites (83.9%), whereas petA was most variable (38.7%), indicating contrasting evolutionary constraints. Combined phylogenetic analyses resolved five clades: (1) Cosmarium Clade-1 including C. punctulatum and Cosmarium sp. 1; (2) Cosmarium Clade-2 including C. blyttii, C. botrytis, C. costatum, C. ochthodes, C. pachydermum, C. subcostatum, C. subcrenatum, C. subprotumidum, and C. trilobulatum; (3) Cosmarium Clade-3 including C. angulosum, C. formosulum, C. granatum, C. impressulum, C. norimbergense, C. regnellii, C. subtumidum, and Cosmarium sp. 2; (4) Staurastrum Clade-1 represented by S. avicula var. lunatum; and (5) Staurastrum Clade-2 comprising S. boreale, S. dispar, S. kouwetsii, S. margaritaceum, and S. punctulatum. These plastid data provide a valuable resource for species identification and ecological studies, advancing the taxonomic resolution of this morphologically complex order.

Corresponding author E-mail: seungwon10@nnibr.re.kr

학생 구두 발표 1

일 시: 2025년 10월 22일(수) 12:30 - 14:30

장 소: 그랜드볼룸 (Grand Ballroom)

좌장: 구교성/한국환경지리연구소

12:30 - 12:42	ST-01	Extensive microplastics entrapped in bioconstructions of tube-building polychaetes Harim Jeong (Incheon National University)
12:42 - 12:54	ST-02	Spatial heterogeneity of food web structure driven by glacial retreat in Marian Cove, Antarctica: Linking environmental DNA interconnections Kyu-Young Shim (Incheon National University)
12:54 - 13:06	ST-03	AI 접근법 기반 부착돌말영양지수 (mTDI) 개발 연구 김태희 (상명대학교)
13:06 - 13:18	ST-04	Variation in spawning patterns within host mussels among bitterling fishes (Pisces: Acheilognathinae) from the Nakdong and Geum Rivers in Korea Jin Kyu Seo (Sangji University)
13:18 - 13:30	ST-05	Species identification and thermal tolerance assessment of Brachionus spp. strains from a brackish lagoon (Hwajinpo), Southeastern Korea Buom Sup Shim (Gangneung-Wonju National University)
13:30 - 13:42	ST-06	Preliminary study on potential effects of pine wilt disease control insecticide residues on soil invertebrates Dohwan Yoon (Korea University)
13:42 - 13:54	ST-07	한강의 동양하루살이(<i>Ephemera orientalis</i>) 유충의 분포 및 서식지 선호성 이현 (삼육대학교)
13:54 - 14:06	ST-08	남해동부해역에서 낙동강 담수와 대마난류 확장에 따른 성층 형성과 식물플랑크톤 군집의 월별 변동 특성 김준 (한국해양과학기술원)
14:06 - 14:18	ST-09	Free ammonia toxicity and acetate-mediated stress mitigation in <i>Chlamydomon</i> as sp. in piggery wastewater Eun Bin Joa (Jeju National University)
14:18 - 14:30	ST-10	2022-2024년 제주연안 <i>Pseudo-nitzschia</i> 의 계통분류학적 연구 왕욱 (제주대학교)

Extensive microplastics entrapped in bioconstructions of tube-building polychaetes

Harim Jeong^p, Kyu-Young Shim, In-Cheol Yeo, Sung-Eun Hong, Seung-Kyu Kim, and Chang-Bum Jeong^c

Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea

From a global plastic budget perspective, the amount of plastic detected in the marine environment remains significantly lower than the estimated input. Current estimates suggest that only about 3–4% of global marine plastic emissions are accounted for by plastics floating at the ocean surface or deposited in benthic environments, while limited attention has been given to microplastics (MPs) available for entrapment by marine organisms. Here, we analyzed MPs in *Diopatra* tubes at Hanagae Beach, from the beach zone to the mudflat, and characterized the traits of decorated MPs using FTIR spectroscopy. The results showed that MPs incorporated into tubes comprised various polymer types, suggesting that this species may serve as a potential bioindicator of plastic contamination in intertidal environments. Notably, the number of MPs found in the tubes exceeded those reported in bioaccumulation studies of other benthic organisms, highlighting tube-building polychaetes as novel biological sink for MPs. Our findings provide a novel perspective on the fate of MPs in marine environments by qualitatively and quantitatively analyzing MPs incorporated into the tube decorations of the *Diopatra* sp.

Corresponding author E-mail: cbjeong@inu.ac.kr

Spatial heterogeneity of food web structure driven by glacial retreat in Marian Cove, Antarctica: Linking environmental DNA interconnections

Kyu-Young Shim^p, In-Cheol Yeo, Sung-Eun Hong, Harim Jeong, and Chang-Bum Jeong^c

Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea

Assessment of food web dynamics is crucial for understanding the impact of climate change on marine ecosystems. We assessed spatial heterogeneity of biodiversity and food web structures in Marian Cove, Antarctica, an area experiencing rapid ecological changes due to climate change, by analyzing multiple genetic loci from environmental DNA (eDNA). Biodiversity in Marian Cove varied distinctly between the inner and outer coves, correlating with the physicochemical properties of seawater influenced by glacial retreat. The size composition of primary producers, represented by diatoms in the outer cove and nano- or picophytoplankton in the inner cove, were identified as core taxa in each food web. The food web in the inner cove was mainly driven by bottom-up regulation due to smaller phytoplankton size classes responding to environmental fluctuations, in contrast to the outer cove, where mainly influenced by oceanic water with large diatoms that would enhance the stability of food web structure. Our study enhances the understanding of food web dynamics in response to climate change.

Corresponding author E-mail: cbjeong@inu.ac.kr

AI 접근법 기반 부착돌말영양지수 (mTDI) 개발 연구

김태희^{p1}, 김한솔^{1,2}, 기장서^{c1}

¹상명대학교 생명과학과, 서울, 03016, 대한민국 ²상명대학교 자연과학연구소, 서울, 03016, 대한민국

부착돌말영양지수(TDI)는 현미경 동정에 기반한 담수 수계 건강성 평가지수로 시료 채집 및 분석 과정에 숙련된 전문가를 요한다. 최근 eDNA 메타바코딩을 이용한 생태학적 연구가 활발해지고 있으며, eDNA는 동일한 분석 기법을 사용할 시, 분석자에 의한 편차가 비교적 적은것으로 알려져 있다. 본 연구는 국내 대표 담수 수계인 한강 및 낙동강을 포함한 26개 정점(6 월 13개, 9 월 13개 시료)에서 기존의 현미경 기반 TDI 와 부유성 및 부착성 eDNA 를 이용한 mTDI를 비교-평가하고, 두 방법 간 차이를 유발하는 주요 요인을 탐색하였다. 정 준상관분석결과에서 eDNA 군집은 용존산소량과, 현미경 군집은 엽록소-a와 가장 높은 민감 도를 보였다. 또한 영양염류인 총질소가 두 방법에서차상위로 군집에 분포에 높은 영향을 주었다. mTDI 계산 결과, 현미경 분류군을 이용한 TDI에 비해 부유성 및 부착성 eDNA를 기반으로 한 mTDI가 유의하게 낮은 값을 형성하였다. △mTDI 히트맵 분석 및 SIMPER 분 석결과 Aulacoseria 및 Cyclotella와 같은 중심목 규조류가 TDI-부유성 mTDI 간의 차이를 유발하는 핵심종으로 분석되었다. 랜덤포레스트 변수중요도 분석결과 또한 Aulacoesria 및 Cyclotella가 분석오차를 각각 10, 8% 증가시켜 높은 중요도를 보였다. 따라서 해당 분류군 의 간섭이 적은 것으로 분석된 부착성 eDNA가 mTDI 지수를 개발하는데 적합한 것으로 분 석되었다. 기존에 분석된 종별 오염민감도 및 지표가중치 특성을 보존하기 위해 한강의 부 착 eDNA 종 변수별 Root mean square error (RMSE)을 계산하고 후진 제거법(Backward Elimination)에 기반하여 모델 최적화를 진행하였다. 그 결과, Achnanthidium minutissimum으 로 대표되는 호청수성 종들과 Nitzschia 등의 오염성 종을 포함한 총 25속 42종의 지표종이 선정되었다. 기존 TDI 공식에 해당 eDNA 지표종들을 변수로 사용하는 부착성 mTDI 모델 은 R^2 = 0.92의 높은 예측률을 보였다. 종합하여 본 연구는 기존의 생태학적 의미를 유지 하며 부착성 eDNA로 수질 건강성을 예측할 수 있는 방법론을 제안하였다.

교신저자 E-mail: kijs@smu.ac.kr

Variation in spawning patterns within host mussels among bitterling fishes (Pisces: Acheilognathinae) from the Nakdong and Geum Rivers in Korea

Jin Kyu Seo^p, Hee-kyu Choi, and Hyuk Je Lee^c

Molecular Ecology and Evolution Laboratory, Department of Biological Science, Sangji University, 26339, Wonju, Republic of Korea

The subfamily Acheilognathinae (Cyprinidae), commonly known as bitterlings, is small freshwater fishes symbolized by their unique spawning symbiosis with host mussels. Female bitterlings use their extended ovipositors to lay eggs on the gills of mussels through the mussel's exhalant siphon. In this study, we investigated the spawning patterns of nine bitterling species inhabiting two major river basins (the Nakdong and Geum Rivers) from Korea with respect to host mussel species. The objective of this study was to assess inter-river differences in spawning patterns, examine effects of the presence of mussel's larvae (i.e. glochidia) on bitterling's spawnings, and verify if fertilized eggs develop successfully within Asian clam, Corbicula fluminea. We found that bitterlings generally prefer to spawn in larger mussels, and they showed species-specific differences in host size preference, reproductive output, and also gill chamber use for spawning. Rhodeus uyekii, the only species that spawned in both river basins was found to use the same host mussel species (Nodularia douglasiae, Nodularia breviconcha) for reproduction. The presence of glochidia within mussels led to reduction in bitterling's spawning frequency and reproductive output at some sites, suggesting competition for space and oxygen within mussel chambers. We observed that *Tanakia latimarginata* spawned in C. fluminea in laboratory conditions but no successful embryonic development occurred. The findings of this study will provide baseline ecological data for effectively conserving and managing bitterling and mussel biodiversities in freshwater ecosystems.

** This study was supported by the Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF), Republic of Korea (RS-2025-02304428); the Regional Innovation System & Education (RISE) program through the Gangwon RISE Center, funded by the Ministry of Education (MOE) and Gangwon State, Republic of Korea (2025-RISE-10-005); and the National Research Foundation of Korea (NRF) [NRF-2020R1I1A2069837] funded by the Korea government.

Corresponding author E-mail: hyukjelee@sangji.ac.kr

Species identification and thermal tolerance assessment of Brachionus spp. strains from a brackish lagoon (Hwajinpo), Southeastern Korea

Buom Sup Shim^p and Young Hwan Lee^c

Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Korea

Accurate taxonomic identification is eseential for reliable biodiversity assessments, as it determines both the number and composition of species within a given habitat. However, conventional monitoring approaches, such as visual surveys and counts of individuals, ofren fail to detect small-sized microfauna (e.g., rotifers and copepods), and require advanced taxonomic expertise. Here, we assessed biodiversity in the brackish waters of Hwajinpo lake using environmental DNA (eDNA). Consistent with field observations of rotifers while eDNA analysis further revealed species belonging to the genus *Brachionus*. Furthermore, we isolated two novel strains, H-SL (H-super large) and H-US (H-ultra small), from the Hwajinpo lake, and examined their response to thermal stress. Our results showed that both strainsexhibited enhanced tolerance to low temperature conditions compared with *Brachionus plicatilis* and *Brachionus rotundiformis*, suggesting their ecological importance in food webs of environmentally variable lagoons. Overall, our findings provide valuable insights into the utility of eDNA as a non-invasive tool for biodiversity monitoring and highlights the ecological significane of previously overlooked microfauna in brackish ecosystems.

Corresponding author E-mail: yhlee1@gwnu.ac.kr

Preliminary study on potential effects of pine wilt disease control insecticide residues on soil invertebrates

Dohwan Yoon^{p1}, Taewoo Kim¹, Jaejun Song¹, Jinsol Hong¹, Sungchan Lee², and Kijong Cho^{c1}

¹Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea ²National Institute of Forest Science, Seoul 02455, Korea

Pine wilt disease, caused by the pine wood nematode (*Bursaphelenchus xylophilus*), threatens Korean coniferous forests, and the use of insecticides through trunk injection and drone spraying has been increasingly adopted. However, the potential risks of these practices to non-target soil invertebrates remain unclear. This study assessed ecological risks by comparing residue concentrations of acetamiprid, emamectin and flupyradifurone with Hazardous Concentration for 5% of species (HC₅) values. Field monitoring (2024 - 2025) in Korean pine (*Pinus koraiensis*) stands revealed that emamectin injection left residues in needles and litter but not in humus or topsoil. In combined emamectin-acetamiprid treatments, acetamiprid persisted up to 400 days, with litter concentrations (0.018 mg kg⁻¹) exceeding the HC₅ value (0.015 mg kg⁻¹). Foliar application of flupyradifurone showed rapid decline in needles (5.696 to 0.127 mg kg⁻¹ in 31 days) but increasing residues in litter and humus. These findings indicate current control practices may pose risks to soil invertebrates and underscore the need for pesticide residue risk assessments to ensure sustainable forest disease management.

Corresponding author E-mail: kjcho@korea.ac.kr

한강의 동양하루살이(Ephemera orientalis) 유충의 분포 및 서식지 선호성

이현^{p1}, 윤태중², 김동건^{c2,3}

¹삼육대학교 융합과학과 ²삼육대학교 환경생태연구소 ³삼육대학교 교양교육원

동양하루살이는(Ephemera orientalis McLachlan, 1875) 한국을 포함한 온대 동아시아 전역 에 분포하는 하루살이이다. 최근 한강의 동양하루살이(Ephemera orientalis)이 대발생으로 인하여 한강에 서식하는 동양하루살이 유충의 생태적 특성에 대한 연구의 필요성 또한 증가 하고 있다. 본 연구는 한강의 동양하루살이 대발생에 대한 친환경적인 관리를 위하여 유충 의 분포 및 서식지 선호성을 파악하고자 수행되었다. 2024년에 장마 기간 전후로 총 4회(4, 6, 8, 10월) 걸쳐 팔당대교에서 한남대교 사이의 10개 지점을 선정하고 좌안, 좌중앙, 중앙, 우중앙, 우안의 5개 정점에서 각각 3회 반복 조사를 수행하였다. 유충과 하상은 Surber-net(50 × 50 cm)을 이용하여 채집하였고, 하상은 8종류의 망목(63, 31.5, 16, 8, 4, 2, 1, 0.5 mm)을 사용하여 9개 입도 크기로 구분하여 무게를 측정하였다. 동양하루살이 유충의 밀도는 수변부보다 중앙부에서, 잠실수중보 하류보다 상류에서 높았으며, 집중분포하는 경 향을 보였다(Taylor's power law, b = 1.72). 수온, pH 및 용존산소는 유충 밀도와 유의한 상 관성을 보이지 않았으며, 염분과 전기전도도도 약한 음의 상관을 보였다. 반면, 하상 입자의 개별 비율은 유충 밀도와 상관성을 보이지 않았으나, 하상의 입도의 다양성을 나타내는 하 상다양도(NST: number of substrate types)는 밀도(r = 0.182) 및 상대출현빈도(r = 0.581)와 유의한 양의 상관관계를 보였다. 특히 0.5 mm 이하 세립질 단순 하상에서는 거의 서식하지 않으며, pebble(32-64 mm), cobble, boulder(>64 mm)와 같은 조립질 입경이 포함된 복합하 상(NST: 7-8)에서 유충의 밀도와 출현빈도가 가장 높았다. 따라서 한강에서 동양하루살이 유충은 수변부가 아닌 깊은 수심의 중앙부에 그리고 하상의 구조적 다양성이 높은 곳에 집 중적으로 분포하는 것으로 생각된다.

** 본 연구는 환경부의 재원으로 국립생물자원관의 지원을 받아 수행하였습니다(NIBR202410201).

교신저자 E-mail: ecology@syu.ac.kr

남해동부해역에서 낙동강 담수와 대마난류 확장에 따른 성층 형성과 식물플랑크톤 군집의 월별 변동 특성

김준^{p1,2}, 박범수², 백승호^{c1}

¹한국해양과학기술원 생태위해성연구부 ²한양대학교 생명과학과

연안역의 식물플랑크톤 군집은 계절에 따른 담수 유입, 해양 전선대 형성, 수온 염분 변화에 따른 성층 발달($\Delta \rho$)과 수직 안정도(N^2)의 변동, 영양염 공급 등 다양한 요인에 의해 시·공간적 으로 빠르게 변화한다. 본 연구에서는 남해 동부 해역, 즉 낙동강 하구에서 외해 및 거제 연안까 지 아우르는 9개 정점을 세 구역(Zone I: 거제 연안, Zone II: 대마난류 영향역, Zone III: 낙동강 하구역)으로 구분하고, 2016년 6월부터 2017년 5월까지 해양 화경 특성과 식물플랑크톤 군집의 계절적 변화를 조사하였다. 하계 식물플랑크톤 군집 구조는 담수 유입과 대마난류의 영향으로 $\Delta \rho$ 와 N²가 급변하며 형성된 성층 강도와 영양염 변동에 크게 좌우되었다. 6월에는 Zone II·III에서 $\Delta \rho$ 약 1-2 kg m⁻³, N² 5-10 s⁻² 수준의 약한 성층 발달과 함께 운동성이 유리한 와편모조류가 80%를 차지하였다. 7월 장마로 낙동강 담수가 유입되면서 Zone III의 염분은 9.7까지 낮아지고 질산염(68.4 μ M)과 규산염(63.2 μ M)이 증가하였으며, $\Delta \rho$ 는 5.8 kg m⁻³, N²는 83.9 s⁻²로 조사 기간 중 가장 높게 관측되어 담수 기원의 규조류 Aulacoseira granulata가 우점하였다. 8월에는 성층 강화로 $\Delta \rho$ 6 kg m⁻³ 이상, N² 11 s⁻² 이상의 안정한 수층이 형성되며 와편모조류가 재출현했으나, Zone III에서는 여전히 고영양 환경을 선호하는 규조류가 90% 이상을 차지하였다. 한편, 수온 25 ℃ 전후에서 성장이 유리한 Alexandrium affine과 Margalefidinium polykrikoides는 6-7월에 발생하였으나, 8월 장강 희석수의 유입으로 수온 30 °C 전후, 저염분 (28-30 PSU) 환경이 형성되면서 급격히 소멸하였다. 가을(9-10월)에는 △ ρ 와 N²가 각각 1 kg m⁻³ 이하, 1.5 s⁻² 이하로 낮아지며 성층이 붕괴되고 저층 영양염이 유광층으로 공급되어 규조류 Pseudo-nitzschia delicatissima가 60-80%까지 증가하였다. 겨울철에는 $\Delta \rho \approx$ $0, N^2 < 2 s^2$ 의 완전 혼합 상태가 지속되며 수온과 광 부족으로 총 생물현존량이 낮게 유지되었 고, 군집은 주로 규조류로 구성되었다. 봄(3-5월)에는 $\Delta \rho 1-2 \text{ kg m}^{-3}$, N² 0.3-9.7 s⁻²로 점차 성층이 재형성되며, 동계 혼합으로 공급된 영양염과 수온 광 증가가 더해져 규조류 춘계 대발생 이 나타났고, 동시에 독소 생산종 Alexandrium catenella가 상대적으로 높은 밀도로 출현하였다. 특히 A. catenella는 2-3월에 낮은 밀도로 관찰되다가 4월 Zone II에서 최대 1.3 × 10⁴ cells L^{-1} 까지 증가하였으며 5월에 소멸하였다. 결과적으로, 낙동강 담수와 대마난류 확장은 Δ ρ 및 N²로 표현되는 계절별 수괴 구조를 변화시켜 우점종 교체와 유해 미세조류의 발생·소멸에 직접적인 영향을 미쳤다. 특히 식물플랑크톤 군집의 천이는 월별 환경 Ω 인($\Delta \rho$, N^2 , 영양염) 변화에 따라 뚜렷하게 나타났으며, 구역별로 상이한 양상을 보였다.

** 본 연구는 해양과학기술원의 기본사업"해양 생태계에 미치는 플라스틱 쓰레기의 영향평가 기술 개발(PEA0304)"일환으로 수행되었음

교신저자 E-mail: baeksh@kiost.ac.kr

Free ammonia toxicity and acetate-mediated stress mitigation in *Chlamydomonas* sp. in piggery wastewater

Eun Bin Joa^{p1} and Sang-ah Lee^{c1,2,3}

¹Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
²Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
³Bio-Health Materials Core-Facility Center, Jeju National University, Jeju, 63243, Republic of Korea

Total ammonia nitrogen (TAN) is widely used as a biological toxicity index, but actual toxicity is governed by the concentration of free ammonia (FA), which is pH-dependent. High ammonia levels in piggery wastewater inhibit algal growth, thereby limiting treatment efficiency. In this study, *Chlamydomonas* sp. was employed as a model organism to reassess ammonia toxicity on the basis of FA and to examine the stress-mitigating role of acetate, a compound commonly present in piggery wastewater. IC₅₀ values at the same TAN concentration differed with pH: 40.59 mg/L under uncontrolled conditions (pH ~10.0, FA fraction ~85%) and 56.68 mg/L at controlled pH 9.5 (FA fraction ~64%). These results demonstrate that variation in FA fraction dictates cellular toxicity, underscoring the necessity of FA-based toxicity evaluation. Toxicity assays at the IC₅₀ level further revealed that algal cells cultivated in acetate-containing media (BG-11 and piggery wastewater) exhibited resilience and were fully protected from FA cytotoxicity. Ongoing transcriptomic and fatty acid composition analyses aim to elucidate how acetate alleviates FA toxicity and contributes to stress response mechanisms such as lipid remodeling.

Corresponding author E-mail: leesa@jejunu.ac.kr

2022-2024년 제주연안 Pseudo-nitzschia의 계통분류학적 연구

왕욱^{p1}, 강수민², 김하은², 윤나은³, 김진호^{c1,2}

¹제주대학교 지구해양융합학부 지구해양과학전공 ²제주대학교 지구해양과학과 ³하양대학교 자연과학대학 생명과학과

유해적조(Harmful Algal Blooms; HABs)원인 생물이자, 신경 독소인 Domoic Acid(DA)를 생성하는 것으로 알려진 Pseudo-nitzschia 속은 해양 표유류 및 조류를 사멸시키는 등 해양생태 계를 교란시키는 잠재적 독성 해양 규조류이다. 본 연구는 형태학적 및 분자생물학적 분석을 통해 제주 연안에 출현하는 Pseudo-nitzschia 속의 종 다양성을 연구하였다. 다양한 Pseudo-nitzschia 배양주를 확보하기 위해 2022년 3월부터 2024년 4월까지 매월 제주도 연안 12개 정점에서 표층 해수를 채집하였고, 단일 세포 분리법을 통해 총 48개의 Pseudo-nitzschia 배양주들을 확보하였다. 확보한 배양주들은 광학현미경을 통한 관찰 및 ITS 유전자 영역의 염기서열 정보를 통해 종을 확인하였고, 염기서열 정보를 통해 ML 계통 분석을 진행하였다. DA 생성 능력을 평가하기 위해 서로 다른 생장 시기의 시료를 채취하고, 세포 내 및 배양액 내 DA 농도를 측정하였다. 분석 결과, 조사 기간 동안 제주도 연안에서 P. brasiliana, P. calliantha, P. cuspidata, P. delicatissima, P. lundholmiae, P. multistriata, P. multiseries, Pseudo-nitzschia sp. 총 8종의 출현을 확인하였다. Pseudo-nitzschia sp.를 제외한 7종 모두 기존 연구에서 독성이 있는 것으로 알려진 잠재적 독성종이었으며, P. lundholmiae은 국내 미기록종, Pseudo-nitzschia sp.는 분자생물학적 계통 분석 결과 신종으로 추정된다. 광학현미경과 주사전 자현미경을 이용한 형태학적 분석 결과, 국내에서 발견된 P. lundholmiae의 미세구조 striae, fibula, poroid 수 등의 형태적 특징은 이전 연구에서 보고된 P. lundholmiae의 특징과 일치하였 다. Pseudo-nitzschia sp.는 ITS rDNA 염기서열 기준으로 기존에 알려진 어떤 종과도 일치하지 않았으며, 계통수 상에서도 다른 종과 별도의 계통군을 형성하였다. P. delicatissima와 P. cuspidata는 다른 나라에서 확보된 종 차이를 보였으면, 나머지 4종은 기존 보고된 결과와 일치하 였다. 독성 분석 결과, 8종 중 3종이 지수생장기 이후 독소를 생성하는 것으로 나타났다. 특히, P. lundholmiae는 지수초기 생장기에서 세포당 1.89 fg의 DA를 생성하였고, P. multiseries는 지수후기 생장기에서 세포당 6.85 fg, Pseudo-nitzschia sp.는 지수후기 생장기에서 세포당 3.84 fg를 생성하였다. 본 연구는 새롭게 발견된 Pseudo-nitzschia종에 대한 분류학적 정보를 제공하 며, 향후 유해성 적조에 대한 조기 경보 및 관리 전략 수립에 기여할 수 있을 것으로 기대된다.

교신저자 E-mail: kimj@jejunu.ac.kr

학생 구두 발표 2

일 시: 2025년 10월 22일(수) 12:30 - 14:30

장 소: 스위트홀 (Suites Hall)

좌장: 백승호/한국해양과학기술원

12:30 - 12:42	ST-11	질소제한 환경에서 해양 박테리아 5종에 의한 Prorocentrum lima의 성장증진 효과 윤나은 (한양대학교)
12:42 - 12:54	ST-12	Microbial community difference in jeju rock pool using eDNA Sung-Eun Hong (Incheon National University)
12:54 - 13:06	ST-13	The adverse effects of fish meal-derived microplastics fibers on fish behavior and gut microbiota Hae Min Yoon (Gangneung-Wonju National University)
13:06 - 13:18	ST-14	Multigenerational effects of elevated temperature on host-microbiota interactions in the marine water flea <i>Diaphanosoma celebensis</i> exposed to micro- and nanoplastics Jun-Hyeon An (Gangneung-Wonju National University)
13:18 - 13:30	ST-15	Effects of herbicide-resitant <i>Brassica juncea</i> hybrids on the gut and fecal microbiota of the decomposer <i>Armadillidium vulgare</i> Jihoon Kim (National Institute of Ecology)
13:30 - 13:42	ST-16	Green tides in Korea: spatio-temporal variation in <i>Ulva</i> community between island and mainland habitats Hye Jin Park (Sangji University)
13:42 - 13:54	ST-17	Using phylogenetic and species diversity metrics for freshwater fish community from two national parks in Korea, based on conventional and eDNA surveys Soon Young Hwang (Sangji University)
13:54 - 14:06	ST-18	Environmental DNA reveals shifts in aquatic biodiversity across environmental gradients in Lake Shihwa, South Korea In-Cheol Yeo (Incheon National University)
14:06 - 14:18	ST-19	기후변화 시나리오에 따른 미래 충청남도 서산시 기후와 국내 지역 별 기후거리를 이용한 유사성 분석 구인경 (한경국립대학교)
14:18 - 14:30	ST-20	A graph neural network(GNN)-based approach for estimation of impacts on freshwater fish in Korea under climate change Min-Ho Mun (Sangmyung University)

질소제한 환경에서 해양 박테리아 5종에 의한 Prorocentrum lima의 성장증진 효과

윤나은^{p1}, 김진호², 박범수^{c1}

¹한양대학교 생명과학과 ²제주대학교 지구해양과학과

유해조류대발생(Harmful algal blooms, HABs)는 인간의 생활과 환경, 생태계에 다양한 영 향을 끼치는 자연 현상이다. 이러한 유해조류대발생의 원인으로는 물리적, 화학적 요인을 꼽 지만 근래에는 박테리아 및 포식자로 인한 생물학적 요인 또한 주목받고 있다. 이러한 생물 학적 요인의 관점을 따라 본 연구에서는 5종의 박테리아를 사용, 저서성 HABs 유발 와편모 조류인 Prorocentrum lima에 접종하여 그 성장 변화를 관찰하는 실험을 수행하였다. 연구에 사용된 5종의 박테리아는 해수에서 분리되었으며, 이러한 박테리아들이 P. lima에게 미치는 영향을 보다 더 잘 이해하기 위하여 무균 배양주를 사용하였다. 또한 지구 온난화와 인간 활 동으로 인한 영양분 결핍 상황을 모사하기 위해 정상 F/2 배지 및 질소, 인, 미량 금속 및 비타민을 제한하는 제한배지를 사용하여 박테리아의 영향이 특정 영양분의 결핍을 통하여 그 성장 양상을 관찰하였다. 정상 F/2 배지에 5종의 박테리아를 각각 접종하였을 때에는 유 의미한 성장 촉진이 관찰되지 않았으며, 인, 미량 금속과 비타민을 제한한 3종류의 제한배지 에서도 일부 박테리아는 성장 증진을 보이면서도 다른 박테리아는 성장률이 거의 변하지 않 거나 저해되는 것을 볼 수 있었다. 그러나 질소 결핍 조건에서는 모든 박테리아가 무균 대조 군(박테리아 미접종)에 비해 세포 수가 유의미하게 증가하였다. 특히 Vibrio alginolyticus는 질소 제한 조건에서 동일한 균주를 접종한 정상 F/2 배지 대비 최대 2.02배의 세포 밀도를 보였으며, Pseudoalteromonas donghaensis는 동일한 박테리아를 접종한 정상 F/2 배지에 비 해 최대 2.2배의 세포 밀도를 나타냈다. 본 연구는 변화하는 해양 환경에 따라 Prorocentrum lima뿐만 아니라 다른 해조류 대량번식(HAB) 유발 종에서도 박테리아와 HAB 유발 종 간의 상호작용에 대한 추가 연구가 수행되어야 함을 시사한다.

교신저자 E-mail: parkbs@hanyang.ac.kr

Microbial community difference in jeju rock pool using eDNA

Sung-Eun Hong^p, Kyu-Young Shim, In-Cheol Yeo, Harim Jeong, and Chang-Bum Jeong^c

Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea

Rock pools present extreme environmental conditions that are often unsuitable for most marine organisms and are therefore inhabited by taxa with specialized ecological adaptations. Despite the ecological importance of microbiomes, studies on rock pool microbial communities remain limited. In this study, we investigated the microbiomes of rock pools at Tosan-ri, Jeju, together with adjacent coastal waters, and conducted physical and biochemical analyses of seawater from each pool to characterize their environments. Microbial diversity in rock pools was markedly lower than in coastal seawater, reflecting the dominance of microorganisms capable of surviving under harsh conditions. Communities in rock pools directly connected to the coast were largely shaped by seawater input through tidal exchange, whereas those in isolated pools were primarily influenced by the composition of organic matter. These findings demonstrate that pronounced differences in microbial community structure can emerge over very small spatial scales within rock pools, providing new insights into the dynamics of microbial communities in marine environments.

Corresponding author E-mail: cbjeong@inu.ac.kr

The adverse effects of fish meal-derived microplastics fibers on fish behavior and gut microbiota

Hae Min Yoon^p and Young Hwan Lee^c

Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea

Microplastic fibers (MPFs) are contaminants of emerging concern; they are ingested by marine biota. About a quarter of global marine fish landings is used to produce fishmeal for aquaculture feed. The inadvertent ingestion of MPFs by organisms in an ecosystem provides a channel for microfibers to enter fish meal. However, the fundamental mechanisms by which MPFs in fish meal affect marine fish remain poorly understood. Here, we investigated the potential toxicity of microfibers on common carp under conditions of direct exposure and indirect exposure through fish meal. Our findings demonstrated that both indirect and direct exposure of MPFs induce behavioral abnormalities (decrease in speed, total distance). We further show that exposure of MPFs through fish meal can lead to increased mucus production in common carp, which may induce microbiome dysbiosis. In particular, the abundance of pathogenic bacteria increased in indirect groups, indicating that MPFs polluion in fish meal can cause intestinal damage. Overall, these findings demonstrates that fish meal and feed are one of the important exposure routes of MPFs to the farmed animals.

Corresponding author E-mail: yhlee1@gwnu.ac.kr

Multigenerational effects of elevated temperature on host-microbiota interactions in the marine water flea *Diaphanosoma celebensis* exposed to micro- and nanoplastics

Jun-Hyeon An^{p1}, Jae-Seong Lee^{c2}, and Young Hwan Lee^{c1}

¹Department of Biological Sciences, College of Science, Sungkyunkwan University,
Suwon, 16419, Korea

²Department of Marine Ecology and Environment, College of Life Sciences,
Gangneung-Wonju National University, Gangneung, 25457, Korea

Rising ocean temperatures are driving unprecedented changes in global marine ecosystems. Meanwhile, there is growing concern about microplastic and nanoplastic (MNP) contamination, which can endanger marine organisms. Increasing ocean warming (OW) and plastic pollution inevitably cause marine organisms to interact with MNPs, but relevant studies remain sparse. Here, we investigated the interplay between ocean warming and MNP in the marine water flea *Diaphanosoma celebensis*. We found that combined exposure to MNPs and OW induced reproductive failure in the F2 generation. In particular, the combined effects of OW and MNPs on the F2 generation were associated with key genes related to reproduction and stress response. Moreover, populations of predatory bacteria were significantly larger under OW and MNP conditions during F2 generations, suggesting a potential link between altered microbiota and host fitness. These results were supported by a host transcriptome and microbiota interaction analysis. This research sheds light on the complex interplay between environmental stressors, their multigenerational effects on marine organisms, and the function of the microbiome.

Corresponding author E-mail: yhlee1@gwnu.ac.kr, jslee2@skku.edu

Effects of herbicide-resitant *Brassica juncea* hybrids on the gut and fecal microbiota of the decomposer *Armadillidium vulgare*

Jihoon Kim^{p1,2}, Kyong-Hee Nam¹, and Seong-Jun Chun^{c1}

¹LMO Team, National Institute of Ecology, Seocheon 33657, Korea ²Department of Biological Science, Wonkwang University, Iksan 54538, Korea

The unintended escape of genetically modified (GM) crops and gene flow to wild relatives raise ecological concerns. In South Korea, CP4-EPSPS-containing *Brassica juncea* hybrids (GM-hybrids) have been identified in roadside habitats, yet their ecological consequences remain poorly understood. Here, we examined the influence of GM-hybrid *B. juncea* leaf litter on the gut and fecal microbiomes of *Armadillidium vulgare*, a dominant decomposer and suitable model for ecosystem-level impact assessment. Feeding assays using wild-type and GM-hybrid litter showed no significant differences in survival or growth of *A. vulgare*. However, microbial profiling revealed marked shifts in bacterial and fungal community structure and functional traits in the GM-hybrid-fed group. Notably, the abundance of intestinal *Plectosphaerella* (Glomerellales) increased, bacterial diversity declined, and fungal diversity rose. Network analysis further highlighted GM-hybrid-specific microbial modules and altered interaction patterns. These findings suggest that GM-hybrids may reshape decomposer-associated microbiomes with potential consequences for decomposition and nutrient cycling. Our approach provides a framework for evaluating ecological risks of transgenes across other crop hybrids and environmental settings.

** We would like to thank the National Institute of Ecology (NIE) funded by the Ministry of Environment (MOE) of the South Korea (Grant Number: NIE-A-2025-04).

Corresponding author E-mail: sjchun@nie.re.kr

Green tides in Korea: spatio-temporal variation in *Ulva* community between island and mainland habitats

Hye Jin Park^{p1}, Seo Yeon Byeon^{1,2}, and Hyuk Je Lee^{C1}

¹Molecular Ecology & Evolution Laboratory, Department of Biological Science, Sangji University, Wonju, Korea ²Oceanic Climate and Ecology Research Division, National Institute of Fisheries Science (NIFS), Busan, Korea

In recent years, occurrences of 'green tide', rapid massive proliferation of green macroalgae (genus *Ulva*), have sharply increased worldwide, due to accelerating climate change and human activities. The macroalgal blooms negatively affect coastal ecosystems, leading to the loss in regional biodiversity and economic damage. Along the Korean coast, green tides have persisted on Jeju Island since the 2000s and have sporadically occurred on the southern coasts of the mainland, particularly in nutrient-enriched areas. However, the major *Ulva* species responsible for these events remain largely unknown. We examined *Ulva* community structure on Jeju Island and the southern coasts using chloroplast tufA gene-based phylogenetic analysis of 966 specimens from 46 sites. The nuclear 5S rDNA marker was further employed to identify species within the LPP (Ulva linza-prolifera-procera) clade. To understand spatio-temporal dynamics of Ulva community more thoroughly, we added newly collected specimens in 2025. Our results revealed considerable differences in *Ulva*-community structure between Jeju Island and the southern coasts, with seasonal variation in both regions. In Jeju Island, nine species were detected, with U. ohnoi predominant (43.7%) followed by *U. australis* (29.3%). In the southern coasts, *U. australis* (34.8%) and *U. linza* (25.1%) dominated. Overall, considerable spatio-temporal variation was observed between island and mainland communities. The observed nonindigenous *Ulva* species should be continuously monitored for increases in their distribution and biomass. This study provides essential genetic insights into the genus *Ulva* present in Korean coastal areas, thereby informing strategies to mitigate the ecological impacts of green tides.

** This work was supported by the Ministry of Oceans and Fisheries (MOF) of Korea (Development of Adaptation Strategies for Marine Environments in Response to Subtropicalization: Scenarios, Solutions, and Utilization; RS-2025-02304432). This study was also supported by the Korea Institute of Marine Science and Technology Promotion (KIMST), funded by the MOF of Korea (RS-2025-02304428). Additional support was provided by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Agriculture and Food Convergence Technologies Program for Research Manpower Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (grant number RS-2024-00400922).

Corresponding author E-mail: hjk622@gmail.com

Using phylogenetic and species diversity metrics for freshwater fish community from two national parks in Korea, based on conventional and eDNA surveys

Soon Young Hwang^{p1}, Hee-kyu Choi¹, Ji Eun Jang², and Hyuk Je Lee^{c1}

 Molecular Ecology and Evolution Laboratory, Department of Biological Science, Sangji University, Wonju 26339, Republic of Korea
 National Park Research Institute, Korea National Park Service, Wonju 26441, Republic of Korea

Biodiversity encompasses taxonomic diversity, which indicates how many species are present and how evenly they are distributed within a specific habitat; higher species diversity is generally associated with greater community stability and the maintenance of ecosystem function. Phylogenetic diversity (PD) reflects the phylogenetic distances among species that share a habitat, enabling interpretations that consider ecological-evolutionary differentiation and niche differences beyond simple counts of species number. National parks account for a large proportion of endemic regional biodiversity, and periodic field surveys have been conducted under the Natural Parks Act in Korea. However, species identification in these surveys still relies on traditional methods, which are time and labor-intensive and can vary depending on individual investigators. By comparison, environmental DNA (eDNA) metabarcoding is non-invasive and is known to exhibit high species detection rates. The present study examined freshwater fish assemblages in Seoraksan and Deogyusan National Parks in 2025. Using conventional field sampling (cast nets and dip nets), we calculated species diversity (Shannon Index), evenness (Pielou's Index) and species richness (Margalef index) and compared these metrics with PD and other phylogenetic diversity indices. Furthermore, we used water samples for eDNA metabarcoding to estimate the diversity indices and compared those with the conventional-survey based metrics and PD. This framework will offer insight into the applicability of eDNA methods to national park resource surveys.

** This study was supported by the "Conservation of Core Genetic Resources in National Parks" project of the National Park Research Institute, Korea National Park Service; the Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF), Republic of Korea (RS-2025-02304428); and the Regional Innovation System & Education (RISE) program through the Gangwon RISE Center, funded by the Ministry of Education (MOE) and Gangwon State, Republic of Korea (2025-RISE-10-005).

Corresponding author E-mail: hyukjelee@sangji.ac.kr

Environmental DNA reveals shifts in aquatic biodiversity across environmental gradients in Lake Shihwa, South Korea

In-Cheol Yeo^p, Kyu-Young Shim, Sung-Eun Hong, Harim Jeong, and Chang-Bum Jeong^c

Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea

Aquatic biodiversity assessment using environmental DNA (eDNA) metabarcoding has been expanding, yet its reliability in spatially constrained systems remains uncertain. Lake Shihwa undergoes periodic water circulation through the water gate, but continuous freshwater input into the interior creates steep salinity gradients. To test whether organisms associated with distinct salinity regimes could be detected, we collected surface water samples from exterior to interior stations and analyzed biodiversity patterns alongside hydrological parameters. eDNA metabarcoding was performed targeting the cytochrome oxidase I (COI) and 18S rRNA genes, with station salinities ranging from ~30 to 10 PSU. biodiversity differences by salinity was distinct, and module differentiation using a simulated annealing algorithm was likewise salinity-dependent. Importantly, the optimal salinity ranges of taxa within modules corresponded closely with measured salinity conditions. These findings demonstrate that salinity-driven community shifts occur even under high hydrological connectivity and highlight the capacity of eDNA to detect these patterns, thereby enhancing biodiversity assessment.

Corresponding author E-mail: cbjeong@inu.ac.kr

기후변화 시나리오에 따른 미래 충청남도 서산시 기후와 국내 지역 별 기후거리를 이용한 유사성 분석

구인경^{p1,3}, 이용호^{2,3}, 전우찬^{1,3}, 공시은^{1,3}, 유남곤^{1,3}, 임정은^{1,3}, 허예진^{1,3}, 프라딥 아디카리³, 포우델 아닐³, 프라밧 아디카리³, 이동욱³, 전원태⁴, 이충근⁴, 홍선희^{c1,3}

> ¹한경국립대학교 식물자원조경학부 ²고려대학교 오정리질리언스연구소 ³인문생태융합리질리언스연구실 ⁴농촌진흥청 국립식량과학원

기후변화는 작물 생산을 위협하는 동시에 재배 한계선 확대와 작부체계 다양화의 기회를 제공 하며, 잡초의 분포와 확산에도 영향을 미친다. 그러나 국내에서는 이를 예측하기 위한 지역 간 종합적 기후 유사성 분석이 미비하다. 본 연구는 SSP 시나리오 4종(1-2.6, 2-4.5, 3-7.0, 5-8.5) 의 연평균기온, 가장 따뜻한 달의 최고기온, 가장 추운 달의 최저기온, 연강수량, 가장 건조한 달 의 강수량을 활용하여 충청남도 서산시의 현재(2000-2019)와 미래(2050s) 기후가 지역별 현재 기후와 얼마나 유사한지 Euclidean distance를 산출하여 평가하였다. 분석 결과 현재 서산과 기 후거리가 가장 가까운 지역은 충남 당진시(d=0.56)였으며, 가장 먼 지역은 제주 서귀포시 (d=9.61)였다. 현재 서산과 미래 서산 간 기후거리는 SSP1-2.6는 2.69, SSP2-4.5는 3.32, SSP3-7.0는 3.70, SSP5-8.5는 3.96으로 나타났으며, 이는 각각 현재 서산이 충북 제천시 (d=2.70), 강원 고성군(d=3.35), 강원 양양군(d=3.70), 전남 완도군(d=3.96)과 가지는 기후거리 와 유사한 수준이었다. 또한 시나리오별로 미래 서산과 가장 유사한 현재 지역은 SSP1-2.6는 광 주 남구 SSP2-4.5는 광주 서구 SSP3-7.0는 대구 중구, SSP5-8.5는 광주 서구로 나타났다. 시나 리오별 상위 10개 유사 지역은 광주권과 대구권을 중심으로 대체로 유사하게 유지되었으나, 평 균 기후거리는 SSP1-2.6는 1.06, SSP2-4.5는 1.38, SSP3-7.0는 1.71, SSP5-8.5는 1.98으로 점 차 증가하였다. 이러한 값은 각각 현재 서산이 인천 남동구(d=1.05), 인천 계양구(d=1.38), 경기 하남시(d=1.71), 충남 청양군(d=1.98)과 가지는 거리와 유사하였다. 이는 기후변화가 심화될수록 미래 서산의 기후가 특정 지역과의 유사성을 유지하면서도 전반적으로 현재와는 더 멀어지는 새 로운 기후 조건으로 변화하고 있음을 보여준다.

** 본 연구는 농촌진흥청의 지원과(RS-2024-00428455) 오스트레일리아 CSIRO 지원(2025 00140001)과 농림식품기술기획평가원의 농식품 과학기술 융합형 연구인력양성사업(RS-2024-00400922)으로 수행되었습니다.

교신저자 E-mail: shhong@hknu.ac.kr

A graph neural network(GNN)-based approach for estimation of impacts on freshwater fish in Korea under climate change

Min-Ho Mun^p, Hyung-Eun An, Jong-Won Baek, Seung-Min Han, Sung-Wook Kim, Jae-In Shin, and Chang-Bae Kim^c

Biotechnology Major, Sangmyung University, Seoul 03016, Republic of Korea

Freshwater ecosystems play a crucial role in biodiversity conservation as habitats for diverse organisms. However, freshwater ecosystems are exposed to threats such as climate change and are especially vulnerable relative to other ecosystems, as migration of organisms is restricted by land and coastal. Therefore, the need to estimate impacts on freshwater organisms caused by these threats and respond early is increasing in order to conserve the biodiversity of freshwater ecosystems. Graph neural networks (GNNs), which take graphs composed of nodes and edges as input to train relationships among nodes, can be effectively used to analyze the complex interactions between freshwater species and physicochemical variables. In this study, we employed a GNN-based approach to estimate the impacts of physicochemical variables including temperature on freshwater fish, one of the key taxa in freshwater ecosystems. This is a preliminary study to identify impacts of climate change on freshwater organisms and is expected to provide foundational data for further response strategies.

** This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBRE202505).

Corresponding author E-mail: evodevo@smu.ac.kr

2025 한국환경생물학회 정기학술대회

포 스 터 발 표

포스터발표

1. 유해생물 (Harmful organisms)

- P1-01 서울시(양천구, 강서구)의 말라리아 매개모기(*Anopheles* spp.) 발생 현황 손성욱, 김학현, 강효정, 윤태중, 김동건 (삼육대학교)
- P1-02 Surface modification with bacterial bio-compounds for efficient removal of *Microcystis aeruginosa* Sehoon Oh, Yun Hwan Park, Sungho Yun, and Yoon-E Choi (Korea University)
- P1-03 Zinc metal-organic frameworks as sustainable adsorbents for removal of cyanobacteria Yun Hwan Park, Sungho Yun, and Yoon-E Choi (Korea University)

3. 동물생태·분류·유전 (Animal ecology, classification, genetics)

- P3-01 한국 기수역 옆새우류 (갑각아문, 연갑강, 단각목)의 동물상 연구 최재홍, 김영효 (단국대학교)
- P3-02 Relative performance of three phylogenetic methods based on complete mitochondrial genomes of barnacle

 Seongjun Bae (National Marine Biodiversity Institute of Korea)
- P3-03 PCR-based evaluation of aquaculture status in *Takifugu rubripes* products

 Soo Min Lee, Hyun Jung Kang, Min Jeong Kim, Ji Eun Kim, Jeong Eun Park, Yun Jeong Ji, and Tae

 Sun Kang (Seoul Women's University)
- P3-04 Machine learning based analysis for understanding the associations between life-history traits and gut microbiota in *Daphnia galeata* under fish predation risk

 Sung-Wook Kim, Seung-Min Han, Min-Ho Mun, Tae-June Choi, Hyung-Eun An, Jong-Won Baek,
 Jae-In Shin, and Chang-Bae Kim (Sangmyung University)
- P3-05 Morphological analysis of developmental stages of Pseudodiaptomidae (Calanoida) in brackish waters of South Korea

 Buom Sup Shim and Young Hwan Lee (Gangneung-Wonju National University)
- P3-06 멸종위기종 수원청개구리의 형태학적 차이 및 성적크기이형성 확인 박은진, 구교성, 장이권 (이화여자대학교)

4. 식물생태·분류·유전 (Plant ecology, classification, genetics)

- P4-01 한려해상국립공원의 멸종위기종 백양더부살이(*Orobanche filicicola*)에 대한 세포유전학적 및 생태학적 연구 임은준, 유상형, 박선희, 진승환, 안명덕, 김재선, 김춘옥, 이종란, 조갑자, 최보경, 장태수 (국립공원공단)
- P4-02 **잔개자리(***Medicago lupulina* L.) **외부 형태 형질의 지형학적 변수의 영향** 조민수, 정규영, 나채선 (국립백두대간수목원)
- P4-03 The first complete chloroplast genome of *Dioscorea coreana*: genome structure and phylogenetic relationship

 Ji Eun Kim, Gyu Young Chung, and Chae Sun Na (Baekdudaegan National Arboretum)
- P4-04 딥러닝을 활용한 산림 내 작물 재래원종(KCWR) 가지속(Solanum) 종자 5종 이미지 분류 및 Grad-CAM 분석 추예린, 나채선, 정규영 (국립백두대간수목원)
- P4-05 New open-access platform, 'Seed Pedia' on native seeds
 Chae Sun Na and Ye Rin Chu (Baekdudaegan National Arboretum)
- P4-06 Wild plant strategies for coping with heavy metal stress: metabolomic insights from an abandoned Korean mine

 Kyong-Hee Nam (National Institute of Ecology)
- P4-07 저온 플라즈마 처리로 인한 호박 대목 종자의 발아 증진 전우찬, 이용호, 구인경, 공시은, 유남곤, 임정은, 허예진, 프라딥 아디카리, 포우델 아닐, 프라밧 아디카리, 이동욱, 홍선희 (한경국립대학교)

5. 미생물생태·분류·유전 (Microbial ecology, classification, genetics)

- P5-01 *Aeromicrobium solicola* sp. nov., isolated from a riparian soil
 Yun-Kyoung Kwon, So-Ra Ko ,Min-Sung Kim, Won-Suk Choi, Seonah Jeong, Hayoung Lee, and
 Chi-Yong Ahn (Korea Research Institute of Bioscience and Biotechnology)
- P5-02 한국 토착 미세조류 *Chlorella* 및 *Mychonastes*로부터 분리된 유용성분의 분석 김유호, 조복연, 이재학, 김지훈, 남승원 (국립낙동강생물자원관)
- P5-03 **옥외** *Chlorella* 배양 시스템에서 분리된 *Sphingomonas flavida* sp. nov. 최원석, 고소라, 안치용 (한국생명공학연구원)
- P5-04 Physiological adaptation of comammox nitrospira to acidic pH minimizes hydroxylamine leakage and suppresses N2O emissions
 Yunji Choi and Man-Young Jung (Jeju National University)
- P5-05 Nitrogen excess induces cytokinesis arrest and alters lipid metabolism in the bloom-forming desmid Cosmarium tinctum

 Sungmo Kang, Ki-Hyun Kim, Hyeon Ho Shin, Joo-Hwan Kim, Baik-Ho Kim, and Zhun Li (Korea Research Institute of Bioscience and Biotechnology)

6. 생물다양성 및 생물모니터링 (Biodiversity and Biomonitoring)

- P6-01 Phytoplankton diversity and community characteristics in the middle and lower reaches of the Nakdonggang river
 - Jae Hak Lee, Yu Ho Kim, Eu Jin Chung, and Seung Won Nam (Nakdonggang National Institute of Biological Resources)
- P6-02 Bleaching, mortality, and recovery of the coral *Alveopora japonica* following an marine heatwave in 2024, Jeju Island

 Chang Ho Yi and Hye Seon Kim (National Marine Biodiversity Institute of Korea)
- P6-03 국립공원 내 멧돼지의 생태학적 역할 및 아프리카돼지열병(ASF) 대응을 위한 식이습성 분석 김의경, 이상곤, 남궁헌, 이찬주, 김지영, 전호수, 이정봉, 정인선, 최영준, 양정진, 김민, 이호, 김보영, 신금철 (국립공원공단)
- P6-04 Template Matching을 이용한 음향 데이터 내 큰오색딱다구리(Dendrocopos leucotos) 드러밍 탐지하현, 채소연, 장이권 (이화여자대학교)
- P6-05 한려해상국립공원(동부) 내 저서성 대형무척추동물의 서식 현황 권재현, 고민섭, 박송현, 백원석, 신이찬, 왕주현, 이황구(상지대학교)
- P6-06 **봉선사천에 재도입된 참갈겨니(***Zacco koreanus***) 개체군의 장기 생태 연구** 백원석, 고민섭, 권재현, 안종빈, 왕주현, 이황구 (상지대학교)
- P6-07 Bridging the wildlife: A comparative analysis of wildlife corridor use in Korea national parks
 Ji Young Kim, Ji Hong Min, Pyeon Ggang Shin, Sun Jeong Kim, Han Ung Lee, Seon Guk Jo, Ju
 Hyeong Lee, Jung Hurn Lee, Jae Yeon Kim, Eun kyoung Seo, kyung Shin Lee, Dae Je Woo, Jin Ha
 Hwang, Hwa Young Heo, Kyung Bae Kim, and Eui Kyeong Kim (Korea National Park Service)
- P6-08 *Haematococcus lacustris*의 배양 배지 최적화: 성장과 미생물 군집 역학에 대한 다양한 배지의 영향 평가 정지은, 메휘시타지, 이상아 (제주대학교)
- P6-09 Metatranscriptomic profiles reveal microbial community structure and functional dynamics in the Han River Basin

So-Ra Ko, Seonah Jeong, Hayoung Lee, Won-suk Choi, Yun-Kyoung Kwon, and Chi-Yong Ahn (Korea Research Institute of Bioscience & Biotechnology)

- P6-10 전북 벼농사 지역 내 둠벙과 주변에 발생하는 관속식물의 분포 현황 이욱재, 어진우, 정남진, 이병모 (국립농업과학원)
- P6-11 Species composition and reattachment of hull fouling marine diatoms
 Taehee Kim and Jang-Seu Ki (Sangmyung University)
- P6-12 Size-fractionated phytoplankton communities of the East Sea in spring 2025
 Yejin Kim and Seung Ho Baek (Korea Institute of Ocean Science & Technology)
- P6-13 Biodiversity significance of Ulleung Island, East Sea, Korea: A review of species records
 Min Kyung Kim, Hanna Bae, Taeha Kim, Junsik Woo, and Dong Gun Kim (Sahmyook University)
- P6-14 eDNA의 qPCR 분석을 통한 황소개구리의 서식 구명 및 Metabarcoding 분석을 이용한 황소개구리와 무척추동물 관련성 평가 주나래, 남하현, 이은화, 이지은, 박재진, 김경원, 변정호, 박대식 (강원대학교)

- P6-15 Deep-learning based early detection of marine climate change indicator fish species

 Jae-In Shin, Jong-Won Baek, Jung-Il Kim, Min-Ho Mun, Seung-Min Han, Sung-Wook Kim, and
 Chang-Bae Kim (Sangmyung University)
- P6-16침입외래종 북경도마뱀부치(Gekko swinhonis Günther, 1864)의 첫 내륙 개체군 형성구교성, 윤가영 (한국환경지리연구소)
- P6-17 대한민국 50개 섬의 양서·파충류 분포와 환경요인 특성 정지화, 김윤중 (국립호남권생물자원관)
- P6-18 기후변화에 따른 Maxent를 활용한 독말풀(Datura stramonium)의 국내 서식 적합도 변동 예측 유남곤, 이용호, 구인경, 전우찬, 공시은, 임정은, 허예진, 프라딥 아디카리, 포우델 아닐, 프라밧 아디카리, 이동욱 ,홍선희 (한경국립대학교)
- P6-19 Maxent를 활용한 물여뀌바늘(Ludwigia peploides)의 국내 잠재서식지 예측 허예진, 이용호, 전우찬, 구인경, 공시은, 유남곤, 임정은, 프라딥 아디카리, 포우델 아닐, 프라밧 아디카리, 이동욱, 홍선희 (한경국립대학교)
- P6-20 MaxEnt를 이용한 좀들묵새(*Vulpia octoflora*)의 국내 서식 적합도 및 분포 변화 예측 공시은, 이용호, 구인경, 전우찬, 유남곤, 임정은, 허예진, 프라딥 아디카리, 포우델 아닐, 프라밧 아디카리, 이동욱, 홍선희 (한경국립대학교)
- P6-21 MaxEnt를 이용한 외래식물 염소풀(Aegilops cylindrica)의 국내 잠재 서식지 분포 예측 임정은, 이용호, 구인경, 전우찬, 공시은, 유남곤, 허예진, 프라딥 아디카리, 포우델 아닐, 프라밧 아디카리, 이동욱, 홍선희 (한경국립대학교)

7. 생태독성 및 환경호르몬 (Ecotoxicity and environmental hormones)

- P7-01 Comparative ecotoxicological responses of two marine diatoms to ten heavy metals
 Hojun Lee, Heesang Shin, Taejun Han, and Jihae Park (Ghent University Global Campus)
- P7-02 Species sensitivity distributions highlight taxon-specific drivers of ecological risk: comparative assessment of fipronil and triclosan using diatom chronic endpoints

 Hojun Lee, Soyeon Choi, Alfredo MayorgaVillalobos, Eui Seong Kim, Heesang Shin, Taejun Han, and Jihae Park (Ghent University Global Campus)
- P7-03 Combined effects of bisphenol A and micro-polystyrene beads in the brackish water flea Diaphanosoma celebensis

 Yuna Seon, Young-Mi Lee (Sangmyung University)
- P7-04 Single and combined effects of acetaminophen and polystyrene beads on the detoxification system of the brackish water flea *Diaphanosoma celebensis*Yeln Kim, Je-Won Yoo, and Young-Mi Lee (Sangmyung University)
- P7-05 Candidate molecular biomarkers of bacterial responses to toxicants: A multi-omics study on Curvibacter cyanobacteriorum HBC61

 Seonah Jeong, Hayoung Lee, Minjae Son, So-Ra Ko, Won-Suk Choi, and Chi-Yong Ahn (Korea Research Institute of Bioscience & Biotechnology)

P7-06 Omega class glutathione S-transferase (GSTO) from the diatom *Fragilaria saxoplanctonica*: Characterization and pesticide-specific transcriptional response

Jin-joo Hong and Jang-Seu Ki (Sangmyung University)

P7-07 Ascorbate peroxidase (APX) gene in the freshwater diatom *Fragilaria saxoplanctonica* and environmental implications

Suhwa Lee, and Jang-Seu Ki (Sangmyung University)

P7-08 Two novel superoxide dismutases (SODs) in the freshwater diatom *Fragilaria saxoplanctonica* and their specific responses to pollutants

Hee Jin Kang, and Jang-Seu Ki (Sangmyung University)

P7-09 Effects of leaching conditions on the toxicity of plastic leachates in brackish water flea Diaphanosoma celebensis

Yeln Kim, YuNa Seon, SeungByeong Chae, SuYeon Lim, SeoJin Hong, DaEun Jeoung, ChanWoo Park, and Young-Mi Lee (Sangmyung University)

P7-10 First report of a cytosolic *Gtt2*-class glutathione S-transferase in *Alexandrium pacificum* and its role under algicidal exposure

Taehee Kim, Han-Sol Kim, Buhari Lawan Muhammad, and Jang-Seu Ki (Sangmyung University)

9. 기타 (Others in Environmental Biology)

P9-01 Rosmarinic acid-based profiling and genotoxicity evaluation of *Perilla frutescens* leaves from major Korean regions

Je-Ho Lee, Mi-Yeong An, EunJi Ko, Gyung-Tae Ban, Young-Yil Kim, and Jong-Soon Choi (Daehan Cell Pharm INC)

P9-02 Establishment of a standardized liquid-phase administration system in *Drosophila melanogaster* for reproducible evaluation of biological resources

Chul-Min Park, Bohyun Yun, Yeong-Seon Won, and WonWoo Lee (Honam National Institute of Biological Resources)

P9-03 Inhibitory effects of prodigiosin derived from Vibrio ruber on skin pathogens

Hye Seon Song, Seunghui Song, Nakyeong Lee, Sangdon Ryu, Jina Lee, Sung Moon Lee, Yun Ji Kim, Se Won Chun, Aslan Hwanhwi Lee (Honam National Institute of Biological Resources)

P9-04 한국 연안 해양산성화가 취약 해양생물에 미치는 영향

정세미, 정여진, 남정호 (한국해양수산개발원)

P9-05 Dual role of corrosion inhibitors: Mitigating steel corrosion and enhancing insecticidal effects under seawater exposure

Ho Jin Youn, Dong Yeop Lee, Hyoung-Ho Mo, Seol Lee, Hogi Lee, Sangkoo Park, and Min-Hyuk Oh (Animal and Plant Quarantine Agency)

P9-06 Cultivation strategy to improve growth and eicosapentaenoic acid (EPA) production of *Nannochloropsis* oceanica cultivated under different temperatures and light sources

Kyong Ha Han, Bum Soo Park, and Hyeon Ho Shin (Hanyang University)

P9-07 미세조류를 활용한 시멘트 공장 배가스 저감 가능성 평가

정성진, 이상아 (제주대학교)

P9-08 해양식물플랑크톤자원 기탁등록보존기관

윤주연, 신현호 (부경대학교)

P9-09 Optimization of culture conditions to enhance biomass and fatty acid yields in *Tetradesmus obliquus*Suk Min Yun, Daeryul Kwon, Su-Bin Park, Chang Soo Lee, Seung Hwan Lee, Young Hoon Cho, Hyunseok
Shin, Seong-Joo Hong, Huisoo Jang, Youngjin Ryu, Chung Hyeon Choi, and Z-Hun Kim (Nakdonggang
National Institute of Biological Resources)

P9-10 조류제거물질 사용에 따른 수환경변화 모니터링

박혜민, 김동권, 김정은, 문성대 (㈜엔이비)

P9-11 Microalgal extract from *Pseudocalidococcus azoricus* KCTC AG61299 as a potential inhibitor of osteoclast formation for osteoporosis therapy

Xu-Dong Lian and Zhun Li (Korea Research Institute of Bioscience and Biotechnology)

P9-12 담수미생물 기능성 정보 데이터의 통계 분석

이창수, 황혜진, 천원수, 문혜연, 박상규, 오유선, 한길, 이상희, 김정태, 허윤정 (국립낙동강생물자원관)

P9-13 Livestock manure-originated microbial resources for simultaneous pesticide mitigation and plant growth promotion

Tran Yen Linh Lep, Junkyung Leep, Seung-Ryeol Ko, Na-Yeon Jo, Hyun-Sik Choi, and Sun-Goo Hwang (Sangji University)

P1-01

서울시(양천구, 강서구)의 말라리아 매개모기(Anopheles spp.) 발생 현황

손성욱^{p1}, 김학현^{p1,2}, 강효정¹, 윤태중¹, 김동건^{c1,3}

¹삼육대학교 환경생태연구소 ²고려대학교 환경생태공학과 ³삼육대학교 교양교육원

모기과 얼룩날개모기속(Genus Anopheles)은 국내 8종이 기록되어 있으며, 이 중 An. koreicus를 제외한 7종이 말라리아 매개체로 알려져 있다. 현재 서울시는 질병관리청을 중심 으로 말라리아 관리 지역을 인천,-경기북부, 강원북부에서 서울 및 경기 남부까지 확대하여 포괄적 관리 및 세밀한 사례 관리를 추진하고 있다. 그러나 도심지역인 서울의 말라리아 매 개 모기 분포에 대한 기초 자료가 부족하며, 특히 Hyrcanus Group(An. lindesayi, An. koreicus 제외)은 형태적 유사성으로 인해 종 동정이 어려운 실정이다. 이에 본 연구에서는 서울특별시 도심 환경에서의 말라리아 매개 모기 발생 현황을 파악하기 위해 과거 말라리아 환자 발생이 많았던 양천구와 강서구를 중심으로 17개 지점을 선정하고 2025년 5월부터 격주로 성충 모 기에 대한 모니터링과 월 1회 유충 조사를 수행하였다. 그 결과 현재까지 성충 조사를 통해 총 6속 11종 2,797개체가 채집되었고 5개 지점에서 3종(An. pullus, An. lesteri, An. sinensis) 16개체의 얼룩날개모기류가 확인되었다. 유충 서식지 조사에서는 집모기류(Culex spp.) 유충 만 확인되었고 얼룩날개모기류 유충은 확인되지 않았다. 레스터얼룩날개모기(An. lesteri)와 잿빛얼룩날개모기(An. pullus)는 분자생물학적 분석을 통해 서울시에서 처음 기록되었으며, 두 종은 북한의 주요 말라리아 매개체로서 중국얼룩날개모기(An. sinensis)보다 높은 말라리아 전파 능력을 가지는 것으로 보고되어 있다. 따라서 서울시 도심 내에서 확인된 매개 모기의 분포는 향후 말라리아 위험도 평가와 방역 정책 수립에 있어 중요한 기초 자료가 될 것으로 판단되며, 발생지 추적 및 유충 서식처에 대한 정밀한 추가 조사와 지속적인 모니터링이 필 수적이다.

** 본 연구는 서울시(R25TA00344805-00)의 지원을 받아 수행되었습니다.

교신저자 E-mail: ecology@syu.ac.kr

P1-02

Surface modification with bacterial bio-compounds for efficient removal of *Microcystis aeruginosa*

Sehoon Oh^{p1,2}, Yun Hwan Park^{p1,2}, Sungho Yun³, and Yoon-E Choi^{c1}

¹Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea

In this study, algicidal bacteria cultivated in aqueous medium were employed as a bio-based surface modification agent to engineer a high-performance adsorbent for the targeted removal of *Microcystis aeruginosa*. The surface modification significantly improved cell removal capacity, while the incorporation of bacterial bio-compounds imparted specificity toward *M. aeruginosa*. Cyanotoxin release analysis and acute toxicity assessments confirmed that the adsorption process was environmentally friendly. The practical applicability of this approach was further validated in scaled-up systems (50L and 10-ton reactors), where the influence of operational factors (including adsorbent application mode, water temperature, and initial cyanobacterial cell density) was systematically evaluated. Collectively, these findings highlight a novel valorization route for biological algicides repurposed as functional adsorbents and provide operational insights for the effective large-scale mitigation of *M. aeruginosa*.

** This work was supported by the Korea Environment Industry & Technology Institute (KEITI) through a project to develop eco-friendly new materials and processing technology derived from wildlife and Aquatic Ecosystem Conservation Research Program, funded by the Korea Ministry of Environment (MOE) (2021003280004, 2021003280006 and 2022003040001).

Corresponding author E-mail: yechoi@korea.ac.kr

²OJeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea ³Kwanglim Precision Research Institute, Daegu, 43013, Republic of Korea

P1-03

Zinc metal-organic frameworks as sustainable adsorbents for removal of cyanobacteria

Yun Hwan Park^{p1,2}, Sungho Yun³, and Yoon-E Choi^{c1}

¹Division of Environmental Science & Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea

The use of metal-organic frameworks (MOFs) has recently gained attention as a promising approach for mitigating harmful algal blooms (HABs), predominantly driven by the proliferation of the cyanobacterium *Microcystis aeruginosa*. In this study, we explored the HABs removal mechanism of ZIF-8 to establish an advanced mitigation strategy that addresses the shortcomings of conventional methods. Exposure of *M. aeruginosa* to ZIF-8 significantly suppressed photosynthetic activity and induced a sharp increase in reactive oxygen species, while ZIF-8 itself remained stable with minimal ecological risk. Nonetheless, challenges such as recovery and reusability hinder the practical application of MOFs. To overcome these barriers, we developed a fiber-based composite material by immobilizing ZIF-8 within a polyacrylonitrile (PANF) matrix. The resulting ZIF-8/PANF composite was systematically assessed for its efficacy in controlling *M. aeruginosa*. The findings confirmed that this composite not only achieved effective cyanobacterial removal but also resolved key limitations of MOFs by ensuring both material recovery and reuse. Overall, this work provides novel insights into the development of scalable and sustainable strategies for HABs control, thereby contributing to the protection of aquatic environments and human health.

** This work was supported by the Korea Environment Industry & Technology Institute (KEITI) through a project to develop eco-friendly new materials and processing technology derived from the Wildlife Research Program and Aquatic Ecosystem Conservation Research Program, funded by the Korea Ministry of Environment (MOE) (2021003280004, 2022003040001 and 2021003280006). This work was also supported by the National Research Foundation of Korea (NRF) grants (RS-2024–00461635 and RS-2024–00440975).

Corresponding author E-mail: yechoi@korea.ac.kr

²OJeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea ³Kwanglim Precision Research Institute, Daegu, 43013, Republic of Korea

P3-01

한국 기수역 옆새우류 (갑각아문, 연갑강, 단각목)의 동물상 연구

최재홍^P, 김영효^C

단국대학교 의생명과학부 생명과학전공

기수역은 학술적, 생태학적, 보전학적으로 가치가 높은 생태계이다. 그러나 한국 기수역에 서식하는 단각류에 대한 종합적 연구는 아직까지 거의 이루어지지 않았다. 본 연구는 한국 기수역 단각류의 분류학적 다양성과 분포 특성을 규명하고자 수행되었다. 조사는 2016년 4월 부터 2024년 10월까지 6개월 간격으로, 국내 189개 기수역에서 실시하였다. 조사 결과, 총 11 과 16속 39종의 기수역 단각류가 확인되었으며, 출현 개체수는 38,237개체에 달하였다. 이 중 기수멜리타옆새우(Melita aestuarina) 1 신종과 둥근손멜리타옆새우(M. shimizui), 기수카마카 옆새우(Kamaka morinoi), 2 한국 미기록종의 명세를 확인하여 학계에 보고하였고 아니소옆새 우과(Anisogammaridae)와 큰앞손옆새우과(Aoridae)에서도 신종 또는 미기록종 후보가 확인되 어 현재 연구가 진행 중이다. 국내 기수역 옆새우류 중 가장 우점한 종은 기수멜리타옆새우 로, 한국 전역의 기수역에 광범위하게 분포함에도 불구하고 연구 부족으로 인해 2024년에야 신종으로 보고되었다. 분류군별 출현 양상을 보면, 멜리타옆새우과(Melitidae)가 21,057개체 (55%)로 가장 우점하였고, 육질꼬리옆새우과(Corophiidae)가 6,039개체(16%)로 아우점하였다. 출현 종수는 육질꼬리옆새우과가 8종으로 가장 많았고, 이어 멜리타옆새우과(6종), 큰앞손옆 새우과(5종) 순으로 나타났다. 분류군별 개체밀도 또한 멜리타옆새우과가 15.60개체/㎡로 가 장 높았고, 육질꼬리옆새우과(4.47개체/m²), 큰앞손옆새우과(4.39개체/m²)가 뒤를 이었다. 주요 6과의 종별 출현 현황은 지도에 정리하였다. 본 연구는 지금까지 간과되어 온 한국 기수역 단 각류상을 종합적으로 정리, 분석한 최초의 연구라는 점에서 학술적 의미가 크다.

** 이 연구는 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초 연구사업임(NRF-2021R1I1A2045100).

교신저자 E-mail: yhkim@dankook.ac.kr

P3-02

Relative performance of three phylogenetic methods based on complete mitochondrial genomes of barnacle

Seongjun Baepc

Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea

Mitochondrial genome analysis is essential for understanding phylogenetic relationships. However, few studies have compared the performance of phylogenetic approaches for marine invertebrates, which have a complex evolutionary history. This study compared three phylogenetic trees based on 34 complete mitochondrial genomes, including Amphibalanus eburneus, Fistulobalanus kondakovi, and Megabalanus rosa, in terms of (1) gene order, (2) concatenated protein-coding genes, and (3) universal cytochrome c oxidase subunit I (COXI) marker regions. Each phylogenetic tree exhibited significant topological differences (Robinson-Foulds distance of 0.55-0.92). The protein-coding genes (78.8%) performed significantly better in terms of monophyletic preservation than the COXI marker region (61.3%) and gene order (50.0%). Gene order analysis identified two genomic regions (I and II) as hotspots (regions with concentrated rearrangement activity) with significantly elevated breakpoint densities (319 and 100 breakpoints, respectively; p < 0.001), indicating concentrated genome rearrangement activity. Although all three methods consistently preserved some families, they strongly suggested that taxonomic re-evaluation is necessary for Balanidae. In conclusion, gene order provides insights into genome evolution patterns, concatenated protein-coding genes are the most suitable for phylogenetic studies, and COXI markers are useful for rapid species identification rather than phylogenic classification. This comparative analysis provides important insights into the effects of method selection on mitochondrial phylogeny, especially when addressing complex phylogenetic problems in marine invertebrates.

** This work was supported by a grant from the National Marine Biodiversity Institute of Korea (2025M00300)

Corresponding author E-mail: sjbae@mabik.re.kr

P3-03

PCR-based evaluation of aquaculture status in *Takifugu rubripes* products

Soo Min Lee^p, Hyun Jung Kang, Min Jeong Kim, Ji Eun Kim, Jeong Eun Park, Yun Jeong Ji, and Tae Sun Kang^c

Department of Food Science and Technology, Seoul Women's University, Seoul, 01797, South Korea

Takifugu rubripes, commonly known as the tiger puffer with high commercial value in East Asian cuisine, is extensively cultivated under controlled aquaculture conditions to ensure the production of tetrodotoxin (TTX)-free products. Accurate discrimination between cultured and wild *T. rubripes* individuals is critical for food safety and regulatory oversight, owing to the potential presence of TTX in wild populations. In this study, the aquaculture status of 100 commercial tiger puffer products sold in online and offline markets in South Korea was evaluated using six validated genetic markers in a PCR-based method. These marker profiles showed complete amplification and consistently produced a single amplicon across all cultured *T. rubripes* products. However, the six primer sets showed inconsistent amplification patterns in wild *T. rubripes* samples, with no complete amplification observed. These results indicate that PCR marker profiles can serve as practical indicators of aquaculture status. Further validation through sequence confirmation, expanded sampling, and parallel TTX measurement is needed to improve reliability and applicability.

Corresponding author Email: missa1976@swu.ac.kr

P3-04

Machine learning based analysis for understanding the associations between life-history traits and gut microbiota in Daphnia galeata under fish predation risk

Sung-Wook Kim^{p1†}, Seung-Min Han^{1†}, Min-Ho Mun¹, Tae-June Choi², Hyung-Eun An^{1,3}, Jong-Won Baek¹, Jae-In Shin¹, and Chang-Bae Kim^{c1}

¹Biotechnology Major, Sangmyung University, Seoul 03016, Republic of Korea ²Research and Development Center, Insilicogen Inc., Yongin 16954, Republic of Korea ³Institute of Intelligence Informatics Technology, Sangmyung University, Seoul 03016, Republic of Korea

The gut microbiota influences host fitness and survival across diverse organisms, including the genus *Daphnia*, a key freshwater zooplankton group, and can shift under predation risk. In *Daphnia galeata* under fish predation risk, life-history traits such as reproduction and growth change alongside shifts in gut microbiota composition, suggesting complex adaptive responses. In recent years, researchers have turned to machine learning to address microbiota complexity, with machine learning uncovering intricate patterns and correlations in large datasets. To understand the relationship between life-history traits and gut microbiota composition under fish predation risk in *D. galeata*, we measured life-history traits and profiled the gut microbiota under control (no fish predation) and fish predation risk conditions. We then applied machine learning models to the microbiota profiles to prioritize candidate taxa associated with variation in host life-history traits under predation risk. The analysis prioritized candidate taxa associated with changes in the measured traits, suggesting associations between host traits and microbiota composition. These results show that machine learning analysis can inform our understanding of host-microbiota interactions under predation risk.

** This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBRE202505).

† These authors contributed equally to this work.

Corresponding author Email: evodevo@smu.ac.kr

P3-05

Morphological analysis of developmental stages of Pseudodiaptomidae (Calanoida) in brackish waters of South Korea

Buom Sup Shim^p and Young Hwan Lee^c

Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Korea

Brackish water environments are unique ecosystems that provide critical habitats for diverse aquatic organisms, with further assessments still required for rare and undocumented species. Among these organisms, brackish water copepods are common but often overlooked due to their small size and the difficulty of maintaining live cultures. In this study, specimens collected from Gyeongpo, South Korea, in 2024 were identified as *Pseudodiaptomus* sp. (Calanoida: Pseudodiaptomidae). Detailed morphological analyses were conducted using light microscopy and scanning electron microscopy (SEM), and developmental changes were documented from the nauplius to the adult stage. The specimen exhibited distinct differences in the linguiform process on the ventral side compared to *Pseudodiaptomus inopinus* and *Pseudodiaptomus koreanus*. This study provides a diagnosis, detailed description, and taxonomic illustrations of the developmental stages of *Pseudodiaptomus* sp.

Corresponding author E-mail: yhlee1@gwnu.ac.kr

P3-06

멸종위기종 수원청개구리의 형태학적 차이 및 성적크기이형성 확인

박은진^{p1}, 구교성², 장이권^{c1}

¹이화여자대학교 에코과학부 ²한국환경지리연구소

수원청개구리(Dryophytes suweonensis)는 우리나라 양서류 중 유일한 멸종위기 야생생물 I급으 로, 유사종인 청개구리(D. japonicus)와 높은 외형 유사성으로 인해 오동정이 빈번히 발생하고 있다. 수원청개구리에 대한 기존 형태학적 연구는 성체 수컷을 한정으로 수행되어, 수원청개구리의 형태 정보는 수컷에 국한되어 있는 실정이다. 또한, 청개구리류는 대부분 암컷이 수컷보다 큰 성적크기이형성(Sexual Size Dimorphism)을 보이는 것으로 알려져 있어 수원청개구리에서도 동일 하게 적용되는지 확인이 필요하다. 본 연구는 2025년 경기도 평택시에 위치한 논과 논 주변 환경에 서식하는 한국산 청개구리류 2종을 대상으로 하였으며, 정확한 종 및 성별 구분을 위해 번식절정기 인 6월에 진행하였다. 총 4개의 계측형질을 측정하였으며, 이 중 최근 제시된 고막 아래에 위치하는 신규 형질을 추가 검증하기 위해 고막과 해당 형질의 면적을 함께 측정하여 비교하였다. 앞선 측정값을 기반으로 5가지 형질은 비율로 환산하여 분석에 활용하였다. 포획 결과, 수원청개구리는 총 189개체(수컷=72, 암컷=101, 아성체=16), 청개구리는 총 134개체(수컷=60, 암컷=68, 아성체=6) 를 확보하였다. 종간 계측형질 비교 결과, 11개의 형질에 대해 모든 성별에서 차이가 유의하였다 (p<0.001). 특히, 신규 형질은 다른 형질들과 달리 모든 성별에서 수원청개구리가 청개구리보다 길게 나타났다. 수원청개구리 성적크기이형성 결과, 총 11개 형질 중 6개 형질만 암수 차이가 유의미하였다(p<0.05). 그중 일반적인 계측형질인 체장과 머리 너비에서 암컷 우세 성적크기이형성 이 확인되었다. 일반적으로 청개구리보다 체형이 작은 수원청개구리에서 유일하게 크게 나타난 신규 형질은 직접 측정하지 않고 고막과의 상대적 비교만으로도 충분히 구분될 만큼 뚜렷한 종간 차이를 보였다. 이러한 차이는 성체뿐만 아니라 아성체에서도 일관되게 관찰되어 추후 형태학적 검색표로서의 활용가능성을 시사한다. 청개구리류에서 보고된 일반적인 성적크기이형성 경향과 같이 수원청개구리의 체형은 암컷 우세를 보였으나, 신규 형질에서는 수컷이 더 크게 나타났다. 이는 해당 형질이 고막과 턱 사이에 위치하여, 수컷이 번식울음을 낼 때 턱의 울음주머니가 팽창하 면서 구조적으로 확장된 결과로 해석된다. 본 연구 결과를 통해 수원청개구리의 형태 자료를 보완 및 제시함으로써 향후 멸종위기종인 수원청개구리 보전에 기여할 수 있을 것이다.

** 본 연구는 한국연구재단(RS-2024-00392032)과 농촌진흥청(RS-2024-00397542)의 지원을 받아 수행되었습니다.

교신저자 E-mail: jangy@ewha.ac.kr

한려해상국립공원의 멸종위기종 백양더부살이(*Orobanche filicicola*)에 대한 세포유전학적 및 생태학적 연구

임은준 1 , 유상형 1 , 박선희 1 , 진승환 1 , 안명덕 1 , 김재선 1 , 김춘옥 1 , 이종란 1 , 조갑자 1 , 최보경 2 , 장태수 c1,2

¹국립공원공단 한려해상국립공원동부사무소 ²충남대학교 생명시스템과학대학 생물과학과

백양더부살이(Orobanche filicicola Nakai ex J. O. Hyun, Y. Im & H. Shin)는 국내 남해안 일부 지역에 제한적으로 분포하는 멸종위기 기생식물로, 본 연구는 한려해상국립공원 연대도 에 자생하는 개체군을 대상으로 보전생물학적 기초자료를 마련하기 위해 수행되었다. 백양더 부살이의 체세포 염색체 수는 2n = 2x = 38로 보고되었으며, 핵형 분석 결과 염색체 길이는 2.08-7.44 μm의 변이가 보고되었다. 중부염색체(metacentric chromosome)의 핵형이 19개의 염 색체에서 관찰되었으며, 정상적인 이가염색체의 감수분열이 형성되었다. 유세포분석기(FCM: flow cytometer)를 사용한 유전체 크기 분석 결과, 핵 DNA 함량은 개체 간 3.63-3.82 pg로 피 자식물에서 보고된 개체 내 유전체 크기 변이와 일치하였다. 한려해상국립공원 내 백양더부 살이 생육지 2개 집단의 생태 조사를 수행하여 토양의 이화학적 특성(pH: 5.5-5.6, 유기물 함 량: 49.2g/kg, 유효 인산: 13.4-55.5mg/kg, 칼륨: 0.807-1.4cmol+/kg, 칼슘: 12.12-13.4cmol+/kg, 마그네슘: 3.16-3.59cmol+/kg, 전기전도도: 0.36-0.43dS/m), 기후 조건(최고온도: 33.25°C, 평균 온도: 21.14°C, 평균습도: 84.64%, 최고광도: 57528.32\(\mu\text{mol/s/m}\), 평균광도: 2529.41\(\mu\text{mol/s/m}\) 과 식생을 보고하였다. 백양더부살이는 쑥에 기생하고, 높은 숙주 특이성을 보이며, 개체 생 육 상태와 서식지 환경 간 유의한 상관관계가 확인되었고, 약산성이고 유기물 함량이 높으며 염기성 양이온이 풍부한 토양에서 다수 개체가 공통적으로 생육하였다. 세포분류학 및 생태 학적 요인을 통합한 본 연구는 국내 백양더부살이에 대한 통합적 기초자료를 제공하며, 보호 지역 내에서의 효과적인 보전 전략 수립을 위한 근거를 제공하였다.

교신저자 E-mail: jangts@cnu.ac.kr

잔개자리(Medicago lupulina L.) 외부 형태 형질의 지형학적 변수의 영향

조민수^{p1}, 정규영², 나채선^{c1}

¹국립백두대간수목원 산림생물자원본부 ²국립경국대학교 산림과학과

국내에 분포하고 있는 알파파(Medicago sativa L.)의 산림 내 작물 재래원종 중에서 가장 널 리 분포하고 있는 분류군 중 잔개자리(M. lupulina) 8점에 대해서 측정된 외부 형태 형질과 해당 채집 지역의 지형학적 정보를 바탕으로 집단 간의 상관성을 파악하였다. 잔개자리 종자 는 국립백두대간수목원 시드뱅크의 종자를 활용하였으며, 외부 형태 형질의 측정은 스펙트럼 이미지분석기 및 광디지털현미경을 이용하여 촬영, 측정하였다. 수집 지역의 지형학적 특징 은 연구 대상 종의 표본정보를 활용하였으며, 수치지형도 및 지질도 등 관련 공간정보를 활 용하여 추출하였고, 최종적으로 R 프로그램을 이용하여 상관관계를 분석하였다. 잔개자리 8 점의 외부형태형질 PCA 측정 결과, 8개의 집단에 대해 유의한 차이가 있는 것이 확인되었다. 면적의 경우에는 강원 정선과 전북 군산 집단, 대구 북구와 경기 포천 집단이 매우 유사한 것 으로 나타났으며, 다른 집단과는 평균의 차이가 확인되었다. 색의 경우에는 PCA 분석 기준으 로 특별한 변수로써의 영향을 미치지 않는 것이 확인됨과 동시에, 충북 제천과 강원 동해 집 단 이외에서 모두 동일한 값을 갖는 것이 확인되었다. 이를 통해 외부 형태 형질은 종의 특성 을 파악하는 데 있어서 적합하지 않은 것으로 확인되었으며, 이는 이외의 환경적 변수가 작 용했을 가능성을 시사한다. 외부 형태에 대한 국가 공간정보를 활용한 환경 변수의 연관성을 파악하기 위하여 상관분석 결과, CEC에 대해서 Area, Length, Perimeter 등 크기 변수가 상관 계수 -0.5로 상대적으로 높은 연관성을 나타나는 것이 확인되었다. 특히 모암의 재질과의 상 관성이 0.4 정도로 약한 양의 상관관계를 나타내는 것이 확인되었는데, 모암의 재질에 따라 연관되는 표토입경 중 모래 및 미사에서도 0.3~0.4의 상관관계가 나타나는 것과 연관되어 실 질적으로 식물이 사용하는 토성이 연관되어 있을 것으로 추론할 수 있다. 반대로, Skew의 경 우에는 0.1 이하의 상관계수로 조사된 환경 변수와는 전혀 연관성을 나타내지 않음이 확인되 었다. 다만, 본 결과에서 나타나는 약한 상관관계는 이외의 환경적 변수의 영향을 받을 수 있 으며, 추후, 다양한 변수를 고려한 형태학적 변수의 영향력을 판별할 필요성이 있다.

** 본 연구는 산림 내 작물 재래원종 확보 및 활용 지원 사업(사업번호: RS-2021-KF001796)의 지원에 의해 이루어진 결과로 이에 감사드립니다.

교신저자 E-mail: chaesun.na@koagi.or.kr

The first complete chloroplast genome of *Dioscorea coreana*: genome structure and phylogenetic relationship

Ji Eun Kim^{p1}, Gyu Young Chung², and Chae Sun Na^{c1}

¹Wild Plant Seed Division, Baekdudaegan National Arboretum, Bongwha 36209, Korea ²Department of Forest Science, Andong National Universality, Andong, 36729 Korea

The genus *Dioscorea*, the largest in Dioscoreaceae, is distributed across tropical regions, East Asia, the Mediterranean, and the Americas, and includes staple crops such as yam. As major crops face threats from climate change and food insecurity, Crop Wild Relatives (CWRs) represent vital genetic resources, providing traits such as drought tolerance, pest resistance, and environmental resilience. To explore this potential, we analyzed chloroplast genomes of major Dioscorea species and report here the first complete genome sequence of *D. coreana*. For phylogenetic analysis, we constructed a phylogenetic tree based on GRIN-Global categories, incorporating 2 modern cultivars, 7 landraces, 16 CWRs, *D. coreana*, and 2 outgroup species. The genome is 153,654 bp in length, comprising an LSC (83,612 bp), two IRs (25,552 bp each), and an SSC (18,938 bp), with 114 annotated genes (80 protein-coding, 30 tRNA, and 4 rRNA). Phylogenetic analysis indicates that *D. coreana* is not closely related to cultivated species, but is consistent with previous findings that subgeneric classifications are shaped by both geography and molecular evolution.

** This research was funded by the "R&D Program for Forest Science Technology (Project No. RS-2021-KF001796)" supported by the Korea Forest Service (Korea Forestry Promotion Institute)

Corresponding author E-mail: chaesun.na@koagi.or.kr

딥러닝을 활용한 산림 내 작물 재래원종(KCWR) 가지속(Solanum) 종자 5종 이미지 분류 및 Grad-CAM 분석

추예린^{p1}, 나채선^{c1}, 정규영²

¹국립백두대간수목원 야생식물종자실 ²국립경국대학교

본 연구에서는 딥러닝을 기반으로 산림 내 작물 재래원종(KCWR; Korea Crop Wild Relatives)인 가지속(Solanum) 5종(배풍등, 좁은잎배풍등, 까마중, 털까마중, 왕도깨비가지) 종 자 이미지를 자동 판별하는 EfficientNet 기반 이미지 분류 모델을 구축하고, Grad-CAM을 통 해 모델이 활용한 특징 영역을 시각적으로 규명하였다. 국립백두대간수목원이 수집·보관 중 인 5종을 대상으로 광학현미경(DVM6, Leica)으로 종별 100장, 총 500장의 원시 이미지를 촬 영하였고, 클래스별 폴더 구조로 정리하였다. 학습용 이미지는 Keras의 ImageDataGenerator를 활용해 클래스당 70장을 증강 저장하여 700장으로 확대하였으며, 검증·테스트는 각 15장/클 래스로 구성하였다. 전처리는 224×224 리사이즈와 좌우 뒤집기, 회전, 확대·축소, 대비 조정, 평행이동 등 약한 증강을 적용하였다. 모델은 ImageNet 사전학습 EfficientNetB0 백본에 Global Average Pooling-Dropout(0.35)-Dense(L2=1e-5)로 구성한 분류 헤드를 결합하고, 2단 계 학습(백본 동결 15 epoch → 상위 40% 레이어 미세조정 10 epoch) 전략을 사용하였다 (AdamW, 조기 종료, 학습률 감속, 베스트 가중치 저장, 혼합정밀+XLA). 평가 결과, 테스트셋 정확도 0.9600을 달성하였고, 매크로/가중 평균은 각각 정밀도 0.962, 재현율 0.960, F1 0.960 으로 나타났다. 혼동행렬 분석에서 좁은잎배풍등의 재현율이 상대적으로 낮아 개선 여지가 확인되었으며, Grad-CAM 분석 결과 배풍등은 종자 외곽선·윤곽 대비, 좁은잎배풍등은 배반 (hilum) 및 중앙부 주변 대비, 까마중은 표면의 망상 패턴(융기·미세 홈), 털까마중은 표면 거 칠기와 융기 분포, 왕도깨비가지는 전체 형태와 외곽선이 주요 분류 특징으로 나타났다. 일부 좁은잎배풍등 종자 이미지에서는 배경 구역의 국소 활성으로 배경 의존 가능성이 시사되어, 향후 표본 보강과 촬영 배경 표준화 타깃 증강을 통해 분류 성능과 설명 신뢰도의 추가 향상 을 진행할 계획이다.

** 본 연구는 산림 내 작물 재래원종 확보 및 활용 지원 사업 (사업번호 : RS-2021-KF001796)의 지원에 의해 이루어진 결과로 이에 감사드립니다.

교신저자 E-mail: chaesun.na@koagi.or.kr

New open-access platform, 'Seed Pedia' on native seeds

Chae Sun Napc and Ye Rin Chu

Wild Plant Seeds Division, Baekdudaegan National Arboretum, Republic of Korea

Korea Forest Service opened Bakedudaegan National Arboretum (BDNA) that has two important facilities, Baekdudagan Global Seed Vault (BGSV) and Baekdudagan Wild Plant Seed Bank (BWSPB), for safe conservation and research of wild plant seeds around the world, in 2018. In BWSPB, wild plant seeds are collected from Korea to cooperated Asian countries and their research data - quality, storage behavior, dormancy, chemicals and so on - are accumulated to maintain their viability for storage period and find their values for conservation and usage. Since 2021, BWSPB have carried out the 'Native Seed Information Database' project to enhance the research of native seed traits and share the seed database to the public including seed scientists, botanists, and so on. In 2025, BWSPB has 2,273 species 40,374 accessions with various seed traits data - collection (1,027), storage (2,466), germination (8,155), morphology (100,061), morphology images (948), usability (1,277), genome (41), microbiome (851) cultivation (173) and etc. (6,418) and launched the new open-access platform 'Seed Pedia (seedpedia.koagi.or.kr)' to share the whole data in August. Seedpedia is designed as an interactive platform that allows users to upload data via the website or request corrections to existing records. BWSPB will continuously update and improve this platform, advancing it in collaboration with its user community.

** This study was carried out with support from National Participatory Budget (Korea).

Corresponding author: chaesun.na@koagi.or.kr

Wild plant strategies for coping with heavy metal stress: metabolomic insights from an abandoned Korean mine

Kyong-Hee Nam^{pc}

LMO Team, National Institute of Ecology, Seocheon 33657, Korea

Abandoned mines represent critical hotspots of heavy metal pollution, yet little is known about the adaptive strategies of wild vegetation persisting in these environments. We examined 17 plant species colonizing contaminated soils at the Samkwang Mine in South Korea to identify their phytoremediation potential and underlying metabolic mechanisms. Metal analyses revealed contrasting strategies: Plantago asiatica and Ambrosia artemisiifolia efficiently translocated arsenic and zinc to shoots, indicating phytoextraction capacity, whereas Ailanthus altissima restricted metals to roots, supporting its role in phytostabilization. Gas chromatography-mass spectrometry detected over 75 metabolites, with plants from polluted sites showing markedly altered profiles compared to controls. Key compounds, including tartaric acid, malic acid, and sucrose, were enriched under stress and associated with detoxification, osmotic balance, and energy redistribution. Network analysis further highlighted malic acid as a central hub linking stress-related pathways involving γ-aminobutyric acid, alanine, and maltose. These findings reveal both species-specific and conserved metabolic strategies that facilitate plant survival in metal-rich soils. By integrating ecological observations with metabolomic evidence, this study provides new insights into natural resilience of wild flora and outlines promising candidates and metabolic targets for sustainable soil remediation.

** We would like to thank the National Institute of Ecology (NIE) funded by the Ministry of Environment (MOE) of the South Korea (Grant Number: NIE-A-2025-04).

Corresponding author E-mail: khnam@nie.re.kr

저온 플라즈마 처리로 인한 호박 대목 종자의 발아 증진

전우찬 1,3 , 이용호 2,3 , 구인경 1,3 , 공시은 1,3 , 유남곤 1,3 , 임정은 1,3 , 허예진 1,3 , 프라딥 아디카리 3 , 포우델 아닐 3 , 프라빗 아디카리 3 , 이동욱 3 , 홍선희 c1,3

¹한경국립대학교 식물자원조경학부 ²고려대학교 오정리질리언스연구소 ³인문생태융합리질리언스연구실

종자의 빠르고 균일한 발아는 안정적인 육묘와 생산성 향상을 위한 핵심 요소로, 발아 초기 단계에서의 발아율과 발아세 확보는 작물 생육 전반에 큰 영향을 미친다. 최근 저온 플라즈마 기술은 종자 표면의 물리·화학적 특성을 변화시켜 수분 흡수와 대사활성을 촉진하고, 결과적으로 발아력을 높이는 전처리 기술로 주목받고 있다. 본 연구는 저온 플라즈마 처리가 종자의 발아 특성에 미치는 영향을 규명하고자, 호박(Cucurbita moschata) 대목 종자에 플라즈마 처리의 강도와 시간을 달리하여 종자의 발아력과 발아속도에 대한 반응을 비교하고, 최적처리 조건을 탐색하였다. 플라즈마는 O2가스, 출력은 50W, 200W, 처리 시간 0.5min, 2min, 10min, 압력: 1torr(133pa) 조건에서 처리하였다. 무처리구를 포함해 각 처리구 당 50립4반복으로 표준발아시험(25°C, 7일간)을 수행하여 발아세 (First Count, FC), 최종발아율(Final Germination Rate, FGR), 발아속도계수(Coefficient of Velocity of Germination, CV)를 산출하여 처리 간 차이를 분석하였다. 분석 결과 무처리구 대비 200W·2분 처리구에서 FC, FGR, CV 모든 지표에서 증가하여 처리 효과는 매우 유의하게 나타났다(ANOVA 및 Duncan 검정, p<0.05). 이러한 결과를 통해 저온 플라즈마 처리가 초기 발아 촉진과 발아 균일성 확보에 기여함을 알 수 있고 효과적인 종자 전처리 기술임을 시사한다.

** 본 연구는 농림식품기술기획평가원(RS-2025-02304278), 농림식품기술기획평가원의 농식품 과학기술 융합형 연구인력양성사업(RS-2024-00400922)의 지원으로 수행되었다.

Aeromicrobium solicola sp. nov., isolated from a riparian soil

Yun-Kyoung Kwon^{p1}, So-Ra Ko¹, Min-Sung Kim^{1,2}, Won-Suk Choi^{1,2}, Seonah Jeong¹, Hayoung Lee^{1,2}, and Chi-Yong Ahn^{c1,2}

¹Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea

²Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea

A novel rod-shaped bacterial strain SP1^T was isolated from riparian soil. Comparison of 16S rRNA gene sequence indicated that strain SP1^T exhibits the highest similarity with *Aeromicrobium choanae* 9H-4^T (98.42%), *Aeromicrobium duanguangcaii* zg-Y50^T (98.28%), *Aeromicrobium senzhongii* zg-636^T (98.06%), *Aeromicrobium flavum* TYLN1^T (97.56%), and *Aeromicrobium tamlense* SSW1-57^T (97.56%). The predominant fatty acids (>5.0%) were identified as $C_{16:0}$, $C_{18:0}$, $C_{16:0}$ as $C_{16:0}$, C_{16

Corresponding author E-mail: cyahn@kribb.re.kr

한국 토착 미세조류 Chlorella 및 Mychonastes로부터 분리된 유용성분의 분석

김유호^{p1}, 조복연¹, 이재학¹, 김지훈^{c2}, 남승원^{c1}

¹국립낙동강생물자원관 ²(주)휴에버그린팜

미세조류는 환경정화, 바이오에너지, 산업용 대체소재, 생리활성 물질 생산 등 다양한 분야 에서 활용 가능성이 높아 바이오산업 핵심소재로 주목받고 있다. 본 연구에서는 생장 및 기 능성이 높다고 알려진 한국산 녹조류인 Chlorella 및 Mychonastes 속 8종을 선정하여 이들이 생산하는 주요 유용성분을 분석하였다. 8종의 단백질 함량은 평균적으로 275.9mg/g이며, M. homosphaera가 93.5mg/g으로 가장 낮았고, C. sorokiniana가 509.9mg/g으로 가장 우수하였다. 탄수화물 함량은 평균적으로 294.8mg/g이며, 단백질 함량이 가장 우수하였던 C. sorokiniana 가 6.3mg/g으로 탄수화물 함유량이 가장 낮았고, M. afer가 671.3mg/g으로 가장 높은 함량을 보였다. Chlorella 속의 지방산 함유량은 평균적으로 90.3mg/g로 확인되었다. 4개의 Chlorella 종 중에서 C. sorokiniana가 140.6mg/g으로 가장 높았으며, C16:0(팔미트산)과 C18:2(리놀레 산)의 함량이 각각 31.9mg/g, 40.7mg/g으로 나타났다. Mychonastes 속의 지방산 함유량은 80.6mg/g으로 나타났으며, 4개의 Mychonastes 종 중에서 M. afer가 107.7mg/g으로 가장 높았 다. 색소는 Chlorophyll a, b를 포함하여 카로티노이드계 색소 6종이 분석되었으며, Chlorophyll a는 분석된 8종의 미세조류에서 모두 높은 함량을 보였다. 그 중에서도 M. homosphaera가 123.0mg/g으로 가장 우수하였다. 이러한 연구결과는 한국산 Chlorella 및 Mychonastes 속의 미세조류가 건강기능식품, 바이오연료, 생분해성 플라스틱 산업 등 다양한 분야에 활용될 수 있음을 보여준다.

교신저자 E-mail: seungwon10@nnibr.re.kr

옥외 Chlorella 배양 시스템에서 분리된 Sphingomonas flavida sp. nov.

최워석^{p1,2}, 고소라¹, 안치용^{c1,2}

¹한국생명공학연구원 세포공장연구센터 ²과학기술연합대학원대학교(UST), KRIBB School, 환경바이오공학과

두 균주 Sphingomonas flavida Y1^T와 Sphingomonas flavida Y6는 간장폐수를 영양원으로 Chlorella sp. HS2를 배양하는 옥외 광생물반응기(photobioreactor)에서 분리되었다. 세포는 그람 음성, 호기성, 비운동성 간균으로, 매끄럽고 원형의 황색 집락을 형성하였다. 본 배양 시스템은 고유기물·고염 조건과 여름철 고온이 반복되는 독특한 환경으로, 이러한 선택압 속에서 생존 가능한 대사적 다양성을 가진 균주들이 선별되었다. Y1^T의 16S rRNA 유전자 계통분석 결과 S. changnyeongensis C33^T (96.75%), S. changbaiensis NBRC 104936^T (96.38%), S. tabacisoli CGMCC 1.16275^T (96.09%)와 가장 유사하였으나, 세 균주와는 분리된 독립 계통을 형성하였다. ANI (72.06-78.43%)와 dDDH (19.2-22.1%) 값 역시 종 기준치 미만으로 나타났다. 두 균주의 게놈은 약 3.7 Mb, G+C 함량 68.5 mol%였으며, Y1^T과 Y6 간 ANI 99.97%, dDDH 100%로 동일 종임이 확인되었다. 생리적 특성에서 두 균주는 17-45 °C (optimum 25-30 °C), pH 4.0-10.0 (optimum 6.5-7.5)에서 생장하고, NaCl 4.0%까지 내성을 보여 고염 환경 적응성을 지녔다. 특히 API ZYM 결과 Y1^T은 trypsin 양성·cystine arylamidase 음성이었으나, Y6는 반대로 cystine arylamidase 양성·trypsin 음성으로 reference 종들과 구분되는 고유한 조합을 나타냈다. 주요 지방산은 C17:1 ω6c, 및 Summed feature 8 (C18:1 ω7c/ω6c)이었고, 주요 퀴논은 ubiquinone Q-10이었다. 폴리아민 조성에서는 homospermidine이 주성분(70-82%)으로 확인되었다. 이상의 결과를 통해 Y1^T와 Y6를 고유기·고염 환경에서 생존 가능한 독특한 특성을 가진 신종 Sphingomonas flavida sp. nov.로 제안한다.

교신저자 E-mail: cyahn@kribb.re.kr

Physiological adaptation of comammox nitrospira to acidic pH minimizes hydroxylamine leakage and suppresses N₂O emissions

Yunji Choi¹ and Man-Young Jung^{PC1,2}

¹Interdisciplinary Graduate Program in Advance Convergence Technology and Science, Jeju National University, Jeju 63243, Korea ²Department of Biology Education, Jeju National University, Jeju 63243, Korea

Nitrous oxide (N₂O) is a potent greenhouse gas largely generated during microbial nitrification, yet the effect of environmental pH on N₂O production by complete ammonia oxidizers (comammox) remains poorly understood. Here, we investigated the physiological and transcriptomic responses of comammox Nitrospira inopinata cultivated at pH 6.5, 7.5, and 8.5. Under acidic conditions (pH 6.5), N₂O yield and hydroxylamine (NH₂OH) accumulation were drastically reduced compared to neutral pH. Transcriptomic profiling revealed strong upregulation of genes associated with nitrification, stress defense, and pH homeostasis, while carbon fixation pathways remained largely unchanged. These findings indicate that acid stress induces a reallocation of energy toward cellular maintenance and proton extrusion, thereby minimizing NH₂OH leakage and suppressing N₂O formation without compromising nitrification efficiency. Complementary abiotic assays demonstrated that chemical N₂O formation via NH₂OH - NO₂⁻ reactions was strongly suppressed when NH₂OH availability was low, supporting the mechanistic link between substrate control and N₂O mitigation. Soil microcosm experiments further showed that total N₂O emissions increased under acidic conditions, but selective inhibition of comammox significantly reduced N₂O fluxes at neutral pH, confirming that comammox contributions are most pronounced under non-stressful conditions. Together, these results provide mechanistic insight into how comammox Nitrospira adapt to acid stress, decouple nitrification from N₂O production, and influence soil N₂O dynamics. Our findings bridge a critical knowledge gap and underscore the environmental significance of pH in regulating comammox-derived N₂O, highlighting potential strategies for climate-smart nitrogen management in acidifying ecosystems.

Corresponding author E-mail: myjung@jejunu.ac.kr

Nitrogen excess induces cytokinesis arrest and alters lipid metabolism in the bloom-forming desmid *Cosmarium tinctum*

Sungmo Kang^{1,2}, Ki-Hyun Kim^{p1}, Hyeon Ho Shin³, Joo-Hwan Kim⁴, Baik-Ho Kim^{c5,6}, and Zhun Li^{c1,7}

Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
 Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
 Division of Fisheries Life Science, Pukyong National University, Busan 48574, Republic of Korea
 Ministry of Environment, Government Complex-Sejong, Sejong 30103, Republic of Korea
 Department of Environmental Sciences, Hanyang University, Seoul 04763, Republic of Korea
 Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
 Department of Environmental Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea

The desmid genus Cosmarium often contributes to freshwater blooms. However, its physiological response to nitrogen, particularly excess nitrogen, remains unclear. A systematic investigation was conducted to ascertain the effects of nitrogen availability on C. tinctum (KCTC AG60915), isolated from a bloom source. Cells were batch-cultured over 18 days at four nitrogen concentrations (2 to 250 mg N L⁻¹), monitoring growth, life stages (FlowCam imaging), photosynthetic efficiency (Fv/Fm, Chlorophyll a contents by pulse-amplitude modulated fluorometry), and fatty acid profiles (gas chromatography), followed by multivariate data integration. Optimal growth occurred at 10 mg N L⁻¹. High nitrogen levels (250 mg N L⁻¹) significantly reduced growth rates and severely impaired photosynthetic efficiency (Fv/Fm values dropping to ~0.26), while inducing a substantial accumulation of Stage 3 daughter-cell pairs (up to ~15 % of cells), indicative of arrested cytokinesis confirmed by field emission scanning electron microscopy (FE-SEM). Total fatty acid (TFA) content peaked under nitrogen limitation (2 mg N L⁻¹); however, under nitrogen excess, TFA content was not only the lowest but failed to show any net accumulation above initial levels, suggesting suppressed lipid biosynthesis. In contrast, fatty acid composition depended primarily on culture duration, revealing a decoupling from TFA content regulation. Multivariate analyses confirmed distinct nitrogen-driven physiological states. Nitrogen excess acts as a profound physiological stressor in C. tinctum (KCTC AG60915), markedly impairing photosynthesis, arresting cytokinesis, and severely suppressing net TFA accumulation, potentially involving carbon reallocation. These findings challenge simple nutrient-enrichment paradigms for desmids and reveal complex metabolic trade-offs relevant to ecophysiology and biotechnology.

Corresponding author E-mail: tigerk@hanyang.ac.kr, lizhun@kribb.re.kr

Phytoplankton diversity and community characteristics in the middle and lower reaches of the Nakdonggang river

Jae Hak Lee^p, Yu Ho Kim, Eu Jin Chung, and Seung Won Nam^c

Freshwater Bioresources Culture Collection (FBCC), Nakdonggang National Institute of Biological Resources, Sangju 37182, Korea

The Four Major Rivers Restoration Project (2009-2012) constructed eight weirs in the Nakdong River, altering hydrological regimes and physicochemical conditions by increasing water residence time and water level. These changes strongly affected phytoplankton dynamics. While pre-construction studies emphasized community succession, post-construction research has largely focused on biomass and dominant taxa, with little attention to diversity. This study examined phytoplankton diversity and community structure in the middle and lower reaches of the Nakdong River after weir construction. A total of 771 taxa were recorded, comprising 9 phyla, 18 classes, 47 orders, 86 families, 177 genera, 663 species, 92 varieties, and 16 forms. Seasonal succession was evident: diatoms and green algae dominated from spring to early summer, cyanobacteria prevailed in summer, and diatoms and green algae reemerged during the monsoon. After the monsoon, community composition varied by site, but cyanobacterial dominance declined as temperatures fell in autumn. To evaluate ecological responses, phytoplankton functional groups (PFGs) were applied to compare weir (WS) and non-weir sections (NWS). Seventeen PFGs were identified, with L_M and P groups dominant. Nutrient concentrations (N, P), BOD, and COD were generally higher in WS, where prolonged residence time and enriched nutrients facilitated autogenic growth of dominant PFGs. Hydrological and meteorological factors further shaped PFG composition. WS also acted as source regions, influencing phytoplankton downstream. In particular, the L_M group that developed in WS during the summer monsoon promoted autogenic growth in NWS through inoculation effects.

Corresponding author E-mail: seungwon10@nnibr.re.kr

Bleaching, mortality, and recovery of the coral *Alveopora japonica* following an marine heatwave in 2024, Jeju Island

Chang Ho Yi^P and Hye Seon Kim^C

Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea

Global climate change is intensifying coastal thermal anomalies, particularly in transition zones like Jeju Island. These events are reshaping benthic communities, replacing traditional kelp-dominated systems with assemblages dominated by scleractinian corals and crustose coralline algae. *Alveopora japonica* and *Montipora trabeculata*, the primary reef-building corals in the region, have shown increasing prevalence. To assess their spatiotemporal dynamics, three 15-meter permanent transects were installed at 12–14m depths off Namwon, Seogwipo, with monitoring initiated in April 2024. In August, a marine heatwave with SST peaking at 30.0 °C and exceeding 29.0 °C for 39 days was recorded. A follow-up survey in October confirmed mass bleaching of *A. japonica*, with 99.5% (1,115 colonies) bleached among 1,121 recorded colonies. By April 2025, 83.6% had died, while 16.4% had recovered. In contrast, only 2.3% of 219 *M. trabeculata* colonies showed bleaching, and 110 colonies of *Psammocora* sp. remained unaffected. This study provides the first quantitative assessment of heat stress responses in Jeju corals and serves as a baseline for future ecological monitoring and restoration planning.

Corresponding author E-mail: hskim99@mabik.re.kr

국립공원 내 멧돼지의 생태학적 역할 및 아프리카돼지열병(ASF) 대응을 위한 식이습성 분석

김의경^{p1}, 이상곤⁵, 남궁헌², 이찬주³, 김지영¹, 전호수¹, 이정봉⁴, 정인선⁴, 최영준⁴, 양정진³, 김민³, 이호¹, 김보영⁴, 신금철^{c5}

¹국립공원공단 국립공원연구원 ²국립공원공단 치악산사무소 ³국립공원공단 야생생물보전원 ⁴국립공원공단 자원보전처 ⁵경상국립대학교 산림환경자원학과

본 연구는 메타제노믹 분석을 이용한 멧돼지 배설물 내 먹이 자원 분석을 통해 멧돼지의 생태적인 기능과 아프리카돼지열병(ASF) 확산 예방을 위한 관리방안을 마련하고자 수행되었 다. 배설물 분석을 통한 도심권, 산악형 국립공원 내, 여름철(6~8월) 멧돼지 먹이활동을 비교 하기 위해 4개의 도심권(경주, 계룡산, 북한산, 팔공산)과 4개의 산악형(덕유산, 가야산, 지리 산, 내장산)으로 구분하여 총 8개의 국립공원을 대상으로 배설물 시료를 수집하여 균류와 식 물을 대상으로 식이 습성을 분석하였다. 전체 국립공원의 멧돼지 배설물 내 검출된 멧돼지 먹이원 분석 결과, 고등균류 먹이원 53속, 식물 먹이원 98속이 검출되었다. 식물 먹이원은 벚 나무속(Prunus, 29%), 민들레속(Taraxacum, 23%)이 모든 공원에서 검출되었고, 여름철 멧돼 지의 주요 식물 먹이원인 것으로 조사되었다. 고등균류 먹이원은 산림 지역의 침엽수와 공생 하는 알버섯속(Rhizopogon, 93.7%)이 가장 높은 비율의 멧돼지 먹이원으로 확인되었고, 이 결 과는 도심형, 산악형 국립공원에서 유사한 경향을 나타냈다. 국내 미기록 후보종 7종의 고등 균류 자원이 검출되었고, 상위 5속은 모두 공생성 균근균으로 98.7%를 차지해 수목과 공생하 며 수목 생장에 도움을 주는 버섯 자원이 멧돼지 배설물에서 가장 높은 비율로 검출되어 멧 돼지가 균근성 고등균류의 포자 전파와 산림생태계의 건전성 유지에 중요한 역할을 하는 것 으로 확인되었다. 멧돼지 배설물 분석을 통한 식물, 고등균류 먹이원의 상대적 분포를 분석한 결과, 국립공원 내 여름철 멧돼지 먹이원 비율은 고등균류인 알버섯속(35.4%), 벚나무속 (23.3%), 민들레속(18.4%)을 주요 먹이원으로 이용하고 있는 것으로 나타났다. 멧돼지의 식이 습성 분석 결과를 바탕으로 멧돼지의 먹이활동을 통한 생태계 내에서의 역할을 이해하고, 멧 돼지의 선호 먹이 자원을 활용한 유인제 및 미끼 백신 개발 등 본 연구 결과를 통해 멧돼지 개체수 조절 및 질병 관리 전략 수립과 국립공원 내 야생동물로서의 멧돼지 관리 방안 마련 등 공단 정책 수립 마련에 중요한 기초자료로 활용 가능 할 것으로 기대된다.

교신저자 E-mail: kcshin@gnu.ac.kr

Template Matching을 이용한 음향 데이터 내 큰오색딱다구리(*Dendrocopos leucotos*) 드러밍 탐지

하현^P, 채소연, 장이권^C

이화여자대학교 에코과학부

Passive Acoustic Monitoring(PAM)을 야생조류 모니터링에서 이용함에 따라 수집된 막대한 양의 음향데이터를 효율적으로 처리하고 분석하는 것이 중요하다. 이를 위한 다양한 종 탐지-분류 모델이 개발되었지만, 여전히 모니터링 대상종과 음성신호의 종류에 따라 탐지 성능의 차이가 크다. 딱따구리 드러밍의 경우 1ms 단위의 음향 구조가 종 동정의 핵심 요소이기 때 문에 데이터 처리 과정에서 시간 구조의 해상도가 저하되는 기존 CNN기반 조류 음성 탐지-분류 모델을 적용하는 데 한계가 있다. 따라서 본 연구에서는 PAM 데이터에서 딱따구리 드 러밍을 탐지할 수 있는 모델을 만들었다. 2022년 7월부터 2023년 9월까지 총 15개월간 20분 당 5분의 녹음으로 서부 민간인 통제구역 일대에서 녹음 파일을 수집하였다. 이중 국내 서식 하는 딱따구리류의 드러밍이 가장 활발한 3-4월에 녹음된 데이터 중 큰오색딱다구리의 드러 밍이 존재하는 20개의 녹음파일을 3초 단위로 잘라 총 2000개의 음성 클립을 생성하였다. 큰 오색딱다구리의 드러밍이 선명하게 녹음된 파일에서 하나의 드러밍 음성을 Template으로 지 정하여 드러밍 지속시간과 주파수대에서 동일한 음성 패턴을 발견하도록 Template Matching(TM) 알고리즘을 적용하였다. 이후 알고리즘이 탐지한 드러밍을 라벨링한 데이터와 비교하여 TM 알고리즘의 성능을 평가하였다. 모델의 정확도는 0.9543, F1은 0.7443으로 음성 클립에서 큰오색딱따구리의 드러밍을 효과적으로 감지하였다. 위양성(false positive)은 주로 빗소리 등의 소음이 큰 클립에서 발생하였다. 위음성(false negative)은 드러밍 소리가 너무 작 을 때, 그리고 다른 새 소리와 겹칠 때 발생하였다. 전처리 과정에서 소음 제거 과정을 거치 고 표적 주파수를 딱따구리 드러밍의 낮은 주파수대로 바꾸면 모델의 성능이 개선될 것으로 보인다. 이는 PAM 데이터에서 큰오색딱따구리 드러밍을 효율적으로 찾아내는 데 쓰일 수 있 으며, Template으로 쓸 음성 샘플이 있으면 향후 다른 딱따구리 종의 드러밍 탐지에도 활용할 수 있을 것이다.

** 본 연구는 정부(환경부)의 재원으로 국립생물자원관의 지원을 받아 수행하였습니다 (NIBRE202505).

교신저자 E-mail: jangy@ewha.ac.kr

한려해상국립공원(동부) 내 저서성 대형무척추동물의 서식 현황

권재현⁷, 고민섭¹, 박송현¹, 백원석¹, 신이찬², 왕주현¹, 이황구¹

¹상지대학교 생명과학과 ²국립공원연구원

본 연구는 한려해상국립공원 동부지역에 서식하는 저서성 대형무척추동물의 군집 특성을 파악하고, 수환경을 평가하기 위해 수행되었다. 2024년 4월부터 8월까지 통영한산지구와 거 제해금강지구 내 8개 지점에서 3회 조사를 실시하였으며, 조사 결과 총 4문 6강 19목 52과 90종 4,743개체가 채집되었다. 목별 종수에서는 날도래목이 23종으로 가장 다양한 종이 출현 하였고, 개체수 구성비에서는 비곤충류가 전체 개체수의 약 30%로 높은 비율을 차지하는 것 으로 분석되었다. 군집분석 결과는 조사 지점 중 St. 1은 우점도지수(DI)가 높고, 다양도지수 (H'), 균등도지수(E), 풍부도지수(RI)가 낮은 불안정한 군집구조를 보였으며, 상대적으로 St. 4 에서는 가장 안정적인 구조로 확인되었다. 서식기능군 분석에서는 Clingers가, 섭식기능군 분 석에서는 Collecting Gatherers가 우세하게 나타났다. 이러한 결과는 조사지역 대부분 이들 분 류군이 선호하는 큰돌(boulders), 자갈(cobbles), 잔자갈(gravel)과 같은 입자가 큰 하상구조의 비율이 높았으며, 주요 먹이 자원인 미세입상유기물(FPOM)이 서식처 내에 풍부하게 분포하 고 있기 때문에 나타난 결과로 판단된다. 생물학적 수환경을 평가할 수 있는 TESB 값은 대 부분 지점에서 'Very good' 등급을 나타내었으나, 유량 부족과 인공 구조물의 영향으로 낮은 DO가 확인되어 산소 공급이 제한된 St. 1은 'Moderate' 등급으로 평가되었다. 유사도 분석 결 과 주변 토지이용, 하상구조, 유량, 인공 구조물 등 다양한 요인의 영향에 따라 세 그룹(A, B, C)으로 구분되었다. 상관성 분석을 통해 TESB는 종수, 다양도지수, 풍부도지수, 용존산소 (DO)와는 양의 상관관계를, 우점도지수와는 음의 상관관계를 갖는 것으로 나타났다. 현재 한 려해상국립공원 동부지역은 대부분 저서성 대형무척추동물이 서식하기에 양호한 환경을 유 지하고 있으나, 일부 지역의 경우 비점오염원의 유입과 유량 부족으로 인해 종다양성이 낮은 것으로 확인되었다. 따라서, 종다양성 증진을 위한 서식처 관리(물리적인 서식 환경 개선, 하 천 유량 확보 등)가 필요할 것으로 판단된다

** 본 연구는 국립공원연구원 "국립공원 공원자원조사(과제번호: NPRI 2024)"의 지원에 의해 수행되었습니다.

교신저자 E-mail: morningdew@sangji.ac.kr

봉선사천에 재도입된 참갈겨니(Zacco koreanus) 개체군의 장기 생태 연구

백원석^{p1}, 고민섭¹, 권재현¹, 안종빈², 왕주현^{c1}, 이황구^{c1}

¹상지대학교 생명과학과 ²국립수목원

본 연구는 봉선사천에 재도입된 참갈겨니(Zacco koreanus) 개체군의 서식 안정성과 생물학적 특성을 평가하고, 원 서식처인 조종천과 수동천 개체군과의 비교를 통해 복원 효과를 검증하고자 수행되었다. 참갈거니 개체군의 전장-체중 상관관계, 비만도 지수, 전장빈도분포, 생식소중량지수 (GSI), 그리고 경쟁종인 피라미(Zacco platypus)와의 개체수 비율 비교를 통해 재도입 개체군의 안정적인 정착 유·무를 검증하였다. 길이-체중 상관관계 분석 결과, 봉선사천 개체군의 회귀계수 b 값은 2015년, 2021년, 2025년 모두 3.0 이상을 유지하였고, 비만도 지수(K) 또한 양의 기울기 값을 보였다. 이는 개체군이 길이 증가에 비례하여 체중이 빠르게 증가하고 있음을 시사하며, 안정적인 섭식이 이루어지고 있는 것으로 판단된다. 전장빈도분포 분석 결과, 2015년에는 어린 당년생 개체 비중이 높았고, 2021년에는 성숙 개체 비율이 증가하였으며, 특히, 2025년에는 일반적 인 하천에서 확인할 수 있는 전장빈도분포 양상을 보였다. 이러한 결과로 비추어봤을 때 재도입 개체군은 현재 봉선사천에서 안정화 단계에 있는 것으로 생각되며, 안정적인 생활사 구조를 형성했음을 확인할 수 있었다. 생식소중량지수 분석에서 암컷 개체군은 모든 연도에서 재도입 개체군의 중앙값(median)이 가장 높았고, 수컷 또한 비교적 높은 중앙값(median)을 보여 원 개체군에 비해 번식(산란)에 많은 에너지를 사용하는 것으로 확인되었다. 경쟁종인 피라미와의 비율 변화에서 는 참갈겨니 개체군이 재도입 이후 개체수 비율이 지속적으로 증가하는 반면 피라미 개체군의 비율은 감소하는 경향성을 보였고, 2025년 조사 시에는 참갈겨니 개체군이 차지하는 비율이 약 80% 이상으로 매우 높은 것으로 나타났다. 따라서 현재 봉선사천에 재도입된 참갈겨니 개체군은 안정적인 성장과 높은 생식 능력을 유지하고 있으며, 경쟁 관계에서도 우위를 점하고 있어 장기적인 관점에서 보았을 때 봉선사천 내에 성공적인 정착이 이루어진 것으로 생각된다. 이처럼 안정적인 복원의 성공 요인은 수질 개선과 서식처 복원 등 서식처 관리가 참갈겨니 개체군의 정착과 번식에 영향을 주었으며, 특히, 재도입 시 서로 다른 두 집단에서 포획한 개체의 방류가 안정적인 개체군 정착에 중요한 요인으로 작용한 것으로 판단된다. 따라서, 본 연구 결과는 향후 어류 복원 사업 효과 평가 및 장기적 서식지 관리 전략 수립에 있어 필요한 자료로 활용될 것으로 기대된다.

** 본 연구는 교육부(MOE)와 강원특별자치도(G.S.)가 지원하는 강원지역혁신플랫폼(RISE, Regional Innovation System & Education) 사업(과제번호: 20205-RISE-10-005)의 지원을 받아 수행되었습니다. 또한 본 연구는 국립수목원 연구개발사업(과제번호: KNA 1-2-32-18-3, 과제명: 광릉숲 내 산림생물종 정보 구축을 위한 어류상 분석)의 일환으로 수행되었습니다.

교신저자 E-mail: morningdew@sangji.ac.kr, hyoun215@naver.com

Bridging the wildlife: A comparative analysis of wildlife corridor use in Korea national parks

Ji Young Kim^{p1}, Ji Hong Min², Pyeon Ggang Shin³, Sun Jeong Kim⁴, Han Ung Lee⁵, Seon Guk Jo⁵, Ju Hyeong Lee⁵, Jung Hurn Lee⁶, Jae Yeon Kim⁷, Eun kyoung Seo⁸, kyung Shin Lee⁹, Dae Je Woo⁹, Jin Ha Hwang⁹, Hwa Young Heo¹⁰, Kyung Bae Kim¹¹, and Eui Kyeong Kim^{c1}

¹Division of Ecological Research, Korea National Park Research Institute, Korea National Park Service
 ²Odaesan National Park Office, Korea National Park Service
 ³Seoraksan National Park Office, Korea National Park Service
 ⁴Sobaeksan National Park Northern Office, Korea National Park Service
 ⁵Songnisan National Park Office, Korea National Park Service
 ⁶Woraksan National Park Office, Korea National Park Service
 ⁸Jirisan National Park Jeonbuk Office, Korea National Park Service
 ⁹Jirisan National Park Jeonnam Office, Korea National Park Service
 ¹⁰Deogyusan National Park Office, Korea National Park Service

Wildlife corridors reconnect habitats fragmented by roads and facilitate animal movement and gene flow. Their use and effectiveness may differ by park, corridor type, and taxonomic group. This study analyzed monitoring data from 2015–2024 in eight Korean national parks (Odaesan, Seoraksan, Sobaeksan, Songnisan, Woraksan, Gyeryongsan, Jirisan, Deogyusan) with 16 corridors (eight overpasses, eight underpasses). The dataset included park, corridor, year, season, taxonomic group, species, abundance, and conservation status. Analyses in R summarized total abundance, taxonomic proportions, corridor-type differences, and protected species records. A total of 97,638 individuals were documented. Sobaeksan Jugryeong (underpass, 24,845) and Seoraksan (overpass, 23,385) showed the highest use. Mammals comprised 96.5% of all records, followed by birds (3.4%), amphibians (0.03%), and reptiles (0.01%), while undetermined taxa accounted for 0.08%. Annual counts peaked in 2024 (15,124), showing an overall increase. Corridor type analysis revealed 53,400 individuals in overpasses and 44,238 in underpasses, with mammals dominating both (98.5% and 94.0%). Underpasses were relatively more used by birds, amphibians, and reptiles. Protected species included 1,659 individuals of five Class I and 2,518 individuals of six Class II endangered species, plus 1,487 individuals of seven natural monuments, underscoring the conservation role of corridors. In conclusion, wildlife corridor use varied by park characteristics, installation year, and type. Future management should reflect these differences, with particular focus on protected species. This study provides essential data for evaluating corridor effectiveness and informing national park policy.

Corresponding author E-mail: keuik98@knps.or.kr

Haematococcus lacustris의 배양 배지 최적화: 성장과 미생물 군집 역학에 대한 다양한 배지의 영향 평가

정지은^{p1}, 메휘시타지², 이상아^{c3}

¹제주대학교 생명자원과학대학 생명공학부 분자생명공학전공 ²제주대학교 차세대융복합대학원

전 세계 담수에 서식하는 Haematococcus lacustris는 천연 아스타잔틴의 주요 생산워으로 건강, 화장품, 식품 등 다양한 산업 분야에서 활용된다. 그러나 느린 생장 속도에 기인한 낮은 아스타잔틴 생산성은 상업적 활용의 큰 제한 요인으로 작용한다. 특히 대규모 배양 과정에서 발생하는 높은 비용과 복잡한 공정은 산업화를 제한하는 주요 요인으로 작용하기 때문에 효 율적인 배양 전략 개발이 요구된다. 본 연구는 H. lacustris의 배양 효율을 높이기 위해 박테 리아를 도입한 최적 배지를 개발하는 것이다. 이를 위해 BG-11, OHM, NIES-C 3가지 서로 다른 배지를 사용하여 배양을 진행했으며, 일정한 광 강도, 온도, 통기 조건에서 배양되었으 며, 건조 세포 중량(DCW), 흡광도, 세포 크기 등의 지표를 활용해 바이오매스 생산성을 비교 하였다. 또한 배지 내 총질소(TN)와 총인(TP) 제거율을 분석하여 이용 효율을 산출하였고, 메 타바코딩을 통해 각 배지 조건에서의 박테리아 군집 변화를 분석하였다. OHM 배지는 N-P 자원을 세포량으로 전환하는 효율이 가장 높아 DCW 생산성이 뛰어났으며, BG-11은 효율은 낮았지만, 총생산량 측면에서 더 우수한 결과를 보여주었다. 또한 미생물 군집 분석은 특정 박테리아가 본 균주의 배양 효율을 향상시킬 수 있음을 시사하였다. 박테리아를 활용한 새로 운 배지 조성이 미세조류 성장을 촉진하여 추후 아스타잔틴 생산량 증대에 큰 도움이 될 것 으로 기대되다. 따라서 본 연구는 H. lacutris의 배양 최적화 및 상업적 아스타잔틴 생산 효율 향상을 위한 기초 자료가 될 것이며, 향후 미세조류-박테리아 공생 시스템을 기반으로 한 상 업적 응용 가능성을 제시할 것으로 기대된다.

교신저자 E-mail: leesa@jejunu.ac.kr

Metatranscriptomic profiles reveal microbial community structure and functional dynamics in the Han River Basin

So-Ra Ko^{p1}, Seonah Jeong¹, Hayoung Lee^{1,2}, Won-suk Choi^{1,2}, Yun-Kyoung Kwon¹, and Chi-Yong Ahn^{c1,2}

¹Cell factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Republic of Korea

Thirty sites across the Han River Basin were selected according to Benthic Macroinvertebrate Index (BMI) classes to assess microbial communities using metatranscriptomics, with samples collected in September 2022. Taxonomic profiling showed clear BMI-dependent patterns: *Flavobacterium* dominated in class A, *Limnohabitans* and *Synechococcus* in B–C, and *Arcobacter* in D–E. Indicator Species Analysis (ISA) revealed that impaired classes D and E were characterized by microbial indicators such as *Barnesiella*, *Planktothricoides*, and *Methylomonas*, together with functional traits related to heavy-metal resistance, sulfur metabolism, and organic matter degradation. NMDS analysis revealed distinct clustering of sites by BMI class. Importantly, metatranscriptomic functional indicators uncovered site-specific pollution signals not evident from BMI alone. These findings demonstrate the potential of metatranscriptomics as an additional monitoring tool for evaluating riverine ecosystem health.

Corresponding author E-mail: cyahn@kribb.re.kr

²Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea

전북 벼농사 지역 내 둠벙과 주변에 발생하는 관속식물의 분포 현황

이욱재^{p1,2}, 어진우¹, 정남진², 이병모^{c1}

¹국립농업과학원 농업환경부 기후변화대응과 ²전북대학교 농업생명과학대학 작물생명과학과

최근 기후변화로 인한 극한기상의 발생 비율이 높아짐에 따라 둠벙의 가치가 재조명 되고 있다. 둒벙은 자연 또는 인공 저류지로서 일종의 작은 습지이며 경작에 필요한 물을 담수하 고 유입되는 물을 정수하거나 농업용수가 관개될 때 너무 차가워지지 않도록 하는 등 수문학 적효과 뿐 아니라 농업적인 부분에서 큰 역할을 한다. 또한 연중 담수 또는 습한상태로 여러 식물들이 생육하기 좋은 상태로 존재하여 이상기상이 자주 발생하더라도 생태적 완충지로서 곤충 등 천적의 서식지를 제공하는 농업 생태계의 보루이다. 이러한 특징에 의해 농업 환경 보전 프로그램에서는 생물다양성 증진을 위해 둠벙의 설치를 권고하고 있지만 몇 종의 식물 이 분포해야 하는지 어떤 종류의 식물이 주로 분포해야 하는지 등의 생태환경에 대한 명확한 기준이 없다. 따라서 둠벙이 존재하는 위치에 따라 식물상의 변화가 있는지 어느 위치에 둠 벙이 설치되어야 생태계 보전에 유리한 부분이 있는지 확인하는 과정 중에 있으며 본 조사는 그 일환으로 전북지역의 둠벙에 분포하는 식물상을 일차 확인하고자 하였다. 조사는 2024년 6월부터 10월, 2025년 6월부터 현재 조사 중에 있으며 이앙 후 벼가 생육하는 기간 동안 전 북 지역에서 논에 부속된 59곳의 둠벙을 선정하여 조사 하였다. 우점종과 군락 특성을 확인 하기 위해 관찰된 식물을 Braun-Blaquet 피도 분석방법으로 달관평가하여 기록하고 현장 동 정이 어려운 식물은 채집하여 실험실에서 분류, 동정하여 추후 목록에 추가 하였다. 조사결과 둠벙 내 에서는 9과 15속 16종 1아종 총 17분류군이, 둠벙 주변에서는 87과 112속 121종 1아 종 7변종 총 129분류군이 조사되었으며 둒벙 내와 주변을 합쳐 91과 117속 132종 1아종 7변 종 총 140분류군이 확인되었다 이들 중 다년생이 66분류군 일년생이 74분류군으로 구분되었 다. 둠벙 안에서는 벼과가 우점하였고. 골풀과 부들과 순이었으며 둠벙 주변에서는 벼과, 국 화과 마디풀과, 현삼과, 십자화과 순으로 나타났다.

** 본 연구는 농촌진흥청 농업과학기술 연구개발사업(과제번호:RS-2024-00397542)의 지원에 의해 이루어진 것임

교신저자 E-mail: leebm@korea.kr

Species composition and reattachment of hull fouling marine diatoms

Taehee Kim^p and Jang-Seu Ki^c

Department of Life Science, Sangmyung University, Seoul 03016, Korea

Non-indigenous species introduction through ship biofouling represents a major threat to marine ecosystems worldwide. Despite this concern, our understanding of how ship hull-associated diatoms survive and spread after in-water hull cleaning (IwHC) procedures remains limited. In present study, we examined diatom assemblages in in-water hull cleaning water (IwHCW) collected from three international vessels arriving in Korean waters, alongside benthic diatom communities from four adjacent sampling locations. Morphological and molecular techniques were employed for species characterization. identification Additionally, diatom survival capacity was evaluated through reattachment experiments. Environmental conditions showed variability during IwHCW collection from the vessels, contrasting with the more consistent conditions observed at the four nearby stations. Halamphora spp. detected as the dominant taxa in ship-derived IwHCW samples, while Achnanthes species prevailed at the nearby staions. Non-metric Multidimensional Scaling (NMDS) analysis demonstrated distinct differences in community structure between ship-associated and station-collected samples, indicating either restricted dispersal patterns of vessel-transported diatoms or temporal-spatial environmental effects. Survival experiments demonstrated that Halamphora oceanica remained viable for more than 21 days in unprocessed IwHCW, whereas no viable diatoms were detected in samples filtered through 5 and 32 μm membranes. Our results suggest that unfiltered IwHCW may harbor surviving diatoms capable of substrate recolonization, underscoring the importance of comprehensive risk evaluation for IwHC practices and enhanced biofouling control strategies in nearshore environments.

Corresponding author E-mail: kijs@smu.ac.kr

Size-fractionated phytoplankton communities of the East Sea in spring 2025

Yejin Kim^p and Seung Ho Baek^c

Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje 53201

Size structure shapes trophic transfer and productivity, yet size-fractionated observations in the East Sea remain limited. In May 2025, we sampled 13 stations (Geoje–Dokdo, Ulleung–Dokdo, Dokdo coast) at the surface and subsurface chlorophyll maximum (SCM). Using HPLC pigments and CHEMTAX, we quantified Large (>20 μm) and Small (<20 μm) fractions. Basin-wide, surface communities were prasinophyte dominated (23.7%), whereas SCM was diatom dominated (32.9%). Regionally, surface diatoms were higher on Geoje–Dokdo (26.7%), whereas prasinophytes dominated Ulleung–Dokdo (20.5%) and Dokdo coast (40.3%). At SCM, diatoms were highest along Geoje–Dokdo (46.8%) and Ulleung–Dokdo (33.1%), while Dokdo coast showed elevated prasinophytes (24.2%). In the Large-sized group, diatoms prevailed (77.3% surface; 64.6% SCM). The Small-sized group was more diverse: at the surface, prasinophytes (24.4%) and cryptophytes (17.6%) were prominent; at SCM, diatoms (31.3%) dominated. Within diatoms, the small-size fraction was higher at SCM (80.4 %) and peaked near Dokdo (95.9% at SCM). These observations provide layer- and region-specific size-fraction data for spring in the East Sea.

** This research was supported by the "Research on the Sustainable Use of Dokdo" project (PG54801), funded by the Ministry of Oceans and Fisheries, Republic of Korea.

Corresponding author E-mail: baeksh@kiost.ac.kr

Biodiversity significance of Ulleung Island, East Sea, Korea: A review of species records

Min Kyung Kim^{p1}, Hanna Bae², Taeha Kim², Junsik Woo², and Dong Gun Kim^{c1,3}

¹Institute of Environmental Ecology, Sahmyook University
²Department of Environmental Chemistry and Ecology, GeoSystem Research Corporation
³Faculty of General Education, Sahmyook University

Ulleung Island, a volcanic island in the East Sea of Korea, hosts a distinctive insular ecosystem shaped by geographic isolation and unique environmental conditions. To provide a comprehensive overview of its biodiversity, we compiled a systematic species checklist based on scientific literature, survey reports, and the National Species List of Korea. The inventory covers invertebrates, microalgae, vascular plants, fishes, birds, mammals, and marine macroalgae, offering the most integrated dataset available for the island to date. The checklist reveals that Ulleung Island harbors numerous endangered and endemic taxa, underscoring its high conservation value. In contrast, the presence of invasive species highlights the ecological vulnerability of island systems and the need for targeted monitoring and management. Overall, Ulleung Island exhibits unexpectedly high species richness relative to its size, reinforcing its biodiversity significance. It thus provides a critical foundation for conservation planning, long-term ecological monitoring, and comparative studies with other island ecosystems.

** This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR20250202).

Corresponding author E-mail: ecology@syu.ac.kr

eDNA의 qPCR 분석을 통한 황소개구리의 서식 구명 및 Metabarcoding 분석을 이용한 황소개구리와 무척추동물 관련성 평가

주나래¹, 남하현^{P2}, 이은화^{P3}, 이지은^{P4}, 박재진¹, 김경원¹, 변정호^{C1}, 박대식^{C1,2}

¹강원대학교 과학교육과 ²강원대학교 지구환경시스템융합학과 ³경기과학고등학교 ⁴세종과학예술영재학교

본 연구에서는 황소개구리 특이 qPCR primer와 Tagman probe를 이용하여, 경기도와 충청 도 일대 22개 연못 혹은 저수지(황소개구리 기 발견지점 4곳, 미발견지점 18곳)에서 채수한 environmental DNA(eDNA) 샘플을 분석, 황소개구리의 서식 유무를 먼저 구명하였다. 샘플링 동안 황소개구리 및 양서류 동서종에 대한 개체군 조사를 병행하였다. 개체군의 목견 조사에 서는 12곳(54.5%, 평균±표준편차 = 3.2 ±4.6 마리)에서 최소 1마리의 황소개구리를 관찰하였 다. qPCR로는 14곳(64.6%, 평균±표준편차 = 4,606.2±319.3 copies/ul)에서 황소개구리를 검출 하였다. 목견과 qPCR 결과가 일치한 지점은 10곳이며, qPCR로만 검출된 곳은 4곳, 목견으로 만 관찰된 곳은 1곳이었다. 목견과 qPCR 결과를 종합하면, 본 연구의 조사 지역 중 11곳에서 새롭게 황소개구리 서식이 확인되었다. 반대로 1곳에서는 기존 결과와 달리 황소개구리 확인 되지 않았다. 동서종으로는 참개구리, 옴개구리, 한국산개구리, 청개구리 4종이 확인되었으며, 참개구리가 13곳에서 출현하여, 출현빈도가 가장 높았다. 황소개구리의 qPCR 검출 정도는 수체의 면적, 산, 논, 하천, 주거지와의 거리 어느 것도 유의한 상관을 보이지 않았다. 본 연구 는 1) qPCR로 eDNA 분석을 통해 황소개구리의 서식 여부를 효율적으로 파악할 수 있음을 보여주며, 2) 기 조사 시점에 비해, 경기도와 충청도 일대에서 황소개구리의 확산이 진행되고 있음을 시사한다. 추가로, 황소개구리의 서식 여부가 무척추동물 다양성에 미치는 영향을 평 가하기 위하여 범용 COI barcode primer를 이용한 eDNA metabarcoding 분석을 진행 중이며, 향후 결과를 통해 황소개구리가 무척추동물 다양성에 미치는 영향을 파악할 수 있을 것으로 기대된다.

** 이 연구물은 2025년도 교육부와 17개 시도교육청의 재원으로 한국과학창의재단의 지원을 받아 수행된 성과물임(#202506510001).

교신거가 E-mail: jhbyeon@kangwon.ac.kr; parkda@kangwon.ac.kr

Deep-learning based early detection of marine climate change indicator fish species

Jae-In Shin^{p1†}, Jong-Won Baek^{1†}, Jung-Il Kim², Min-Ho Mun¹, Seung-Min Han¹, Sung-Wook Kim¹, and Chang-Bae Kim^{c1}

¹Biotechnology Major, Sangmyung University, Seoul 03016, Republic of Korea ²Ocean Climate Response and Ecosystem Resarch Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea

The marine environment is affected by the cascading impacts of climate change, thereby heightening the risk of biodiversity loss. Biodiversity loss entails long-term adverse effects for both ecosystems and human societies. To minimize such effects, early detection and timely responses are essential. For this reason, "Marine Climate Change Indicator Species" including fish, have been designated for this monitoring in Korea. Among these, fish species are efficient for monitoring due to their pronounced temperature-driven habitat shifts and ease of observation. However, continuous monitoring produces vast amounts of data, and current manual processing requires considerable time and labor. To support these, recent studies have applied deep learning-based object detection models that can simultaneously detect organisms and classify species in images. Therefore, this study developed and evaluated a object detection model capable of rapidly and accurately detecting marine climate change indicator fish species. The proposed model might facilitate early detection of indicator species changes, supporting biodiversity conservation and climate change adaptation in Korean marine ecosystems.

** This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBRE202505).

Corresponding author E-mail: evodevo@smu.ac.kr

[†] These authors contributed equally to this work.

침입외래종 북경도마뱀부치(*Gekko swinhonis* Günther, 1864)의 첫 내륙 개체군 형성

구교성^{pc1}, 윤가영²

¹한국환경지리연구소 ²이화여자대학교

북경도마뱀부치(Gekko swinhonis)는 중국 고유종으로, 한국에서는 2021년 인천항에서 처음 기록되었다. 국내 유입 시 남한의 서부 및 남부 해안 지역에서 출현할 가능성이 예측되었으 나, 2021년 이후 추가 발견 사례는 보고되지 않았다. 그러나 2025년 9월 23일 충청남도 금산 군의 한 건물에서 다수의 도마뱀부치류 개체가 관찰되었다. 이들 개체는 등면의 물결 무늬, 발바닥의 융털 구조, 고막 위 돌기, 서혜인공 수, 총배설강 옆 3개의 큰 비늘 등에서 기존에 보고된 북경도마뱀부치의 형태적 특징과 일치하였다. 약 20분간의 현장 조사에서 성체 7개 체, 아성체 10개체, 당년생 3개체가 발견되어 북경도마뱀부치의 자연 번식이 이루어지고 있 음을 확인하였다. 해당 지점은 2021년에 본 종이 처음 기록된 인천항에서 약 163 km 떨어져 있으며, 주변은 숲이었다. 일반적으로 북경도마뱀부치와 같은 외래종의 유입은 항만을 통해 이루어지므로 항구 지역에서 제한적으로 서식할 것으로 예상되었다. 그러나 이번 발견은 본 종이 내륙의 산림 지역에도 정착하여 개체군을 형성하고 생존할 수 있음을 보여준다. 해당 지역 개체군의 유입 에는 인간에 의한 인위적 도입과 자연적 확산 가능성이 크다. 물론, 중국 내 분포 및 동아시아 지역의 생물지리학적 특성에 따르면, 한국의 자생 집단일 가능성도 완 전히 배제할 수 없다. 현재 가장 시급한 과제는 추가 개체군의 존재 여부를 확인하는 조사이 며, 동시에 유입 경로를 규명하여 새로운 유입과 타 지역으로의 확산을 조기에 차단하는 노 력이 필요하다.

교신저자 E-mail: flqpfi@hanmail.net

대한민국 50개 섬의 양서·파충류 분포와 환경요인 특성

정지화^{pc1}, 김윤중^{1,2}

¹국립호남권생물자원관 동물자원연구부 ²전남대학교 대학원 생물과학·생명기술학과

척추동물 분류군 중 하나인 양서·파충류는 섬을 비롯한 각 생태계 내에서 중간자 역할을 수 행하며 생태계 안정성 유지에 기여하는 중요한 구성요소 중 하나로 알려져 있어 생물연구의 주요 소재로 이용되어 왔다. 본 연구는 우리나라 주요 섬 지역 양서·파충류의 분포 현황과 환경요인 특성을 파악하기 위해 2021년부터 2024년 동안 문헌 및 야외조사로 자료를 구축하고 통계분석을 통해 진행되었다. 그 결과 기존에 조사가 이루어지지 않은 23개 섬을 포함한 총50개 섬에서 4목 12과 21속 27종의 양서·파충류 분포 및 종목록이 구축되었으며, 국가생물적색목록 멸종우려 범주 및 멸종위기야생생물 4종, 생태계교란생물 2종의 분포가 확인되었다. 환경요인 특성 분석 결과 섬의 면적은 육지와의 거리에 비해 양서·파충류 다양성이 더 많은 영향을 받는 것으로 나타났으며, 양서류와 파충류 모두 양의 상관관계를 보였다. 육지와의 거리는 양서류 다양성과 음의 상관을 보였으며, 파충류는 통계적으로 유의하지 않았다. 본 연구를 기반으로 국내 섬 지역의 양서·파충류 분포 현황을 지속적으로 최신화하고, 섬의 다양한 환경요인과 생물다양성의 관계를 규명하면 섬 지역 생물자원의 보전과 관련 정책 마련을 위한 기초자료 제공에 활용될 수 있을 것으로 판단된다.

교신저자 E-mail: herpeto8712@hnibr.re.kr

기후변화에 따른 Maxent를 활용한 독말풀(*Datura stramonium*)의 국내 서식 적합도 변동 예측

유남곤 1,2 , 이용호 2,3 , 구인경 1,2 , 전우찬 1,2 , 공시은 1,2 , 임정은 1,2 , 허예진 1,2 , 프라딥 아디카리 2 , 포우델 아닐 2 , 프라밧 아디카리 2 , 이동욱 2 , 홍선희 c1,2

¹한경국립대학교 식물자원조경학부 ²인문생태융합리질리언스연구실 ³고려대학교 오정리질리언스연구소

독말풀(Datura stramonium)은 일년생 가지과 초본식물이며 독성 물질을 함유하고 있어 섭 취 시 환각, 경련, 심정지 등 인간과 가축 모두에게 악영향을 미치는 동시에 높은 환경 적응 력을 가진 외래 침입종이다. 또한 다량의 종자를 생산·산포하는 특성을 가진 외래 침입종으로 서 잠재적 위험이 크며, 국내 일부 지역에서 이미 정착하고 있어 탄소 배출에 따른 기후변화 는 이 종의 분포 확산을 가속화할 가능성이 있다. 이에 본 연구는 전 세계 독말풀의 출현 데 이터를 활용하여 국내 잠재 서식지 분포 예측을 하고자 하였다. 이를 위해 종 분포 모형은 MaxEnt를 활용하였고 현재(1970-2000)와 미래(SSP5-8.5, 2041-2060) 기후 조건을 기반으로 독말풀의 국내 잠재 서식지를 예측하고, 두 시점 간 분포 변화를 비교하였다. 생물기후인자는 연평균 기온, 평균 일교차, 등온성, 연간 강수량, 가장 습한 달의 강수량, 가장 건조한 달의 강 수량을 활용하였다. 모델 성능은 0.77로 적합한 수준이었으며 변수 기여도 분석 결과는 연평 균 기온이 가장 큰 영향을 미치는 변수로 확인되었다. 국내 서식 적합도 연구 결과 현재 국내 평균 서식지 적합도는 약 0.64로, 광주을 비롯한 영남 및 호남 남부 지역을 중심으로 높은 적 합도를 보였다. 반면 수도권과 제주 지역은 상대적으로 낮은 적합도를 나타냈다. 미래 (SSP5-8.5, 2050s)의 평균 서식지 적합도는 0.61로 감소하는 것으로 확인되었다. 이러한 결과 는 독말풀의 잠재 분포 및 기후변화에 따른 확산 가능성을 이해하는 데 기초자료로 활용될 수 있다.

** 본 연구는 한국임업 진흥원(RS-2025-02253003), 농림식품기술기획평가원의 농식품 과학기술 융합형 연구인력양성사업(RS-2024-00400922)의 지원에 의해 수행되었음.

Maxent를 활용한 물여뀌바늘(Ludwigia peploides)의 국내 잠재서식지 예측

허예진 $^{p_{1},3}$, 이용호 2,3 , 전우찬 1,3 , 구인경 1,3 , 공시은 1,3 , 유남곤 1,3 , 임정은 1,3 , 프라딥 아디카리 3 , 포우델 아닐 3 , 프라밧 아디카리 3 , 이동욱 3 , 홍선희 $^{c_{1},3}$

¹한경국립대학교 식물자원조경학부 ²고려대학교 오정리질리언스연구소 ³인문생태융합리질리언스연구실

물여뀌바늘(Ludwigia peploides)은 바늘꽃과의 여러해살이풀로 북미, 남아메리카 및 호주가 원산지인 한국의 생태계교란 식물이다. 물여뀌바늘은 육상과 수중에서 증식이 가능하며 이러 한 확산경로는 종자의 장기 휴면 능력과 수위 변동에 적응하는 유연한 발아 생리에서 기인한 다. 또한 물에 뜨는 줄기로 수면을 덮고 거대 군락을 형성함으로써 물흐름을 제한하고 산소 농도를 떨어트려 혐기성 분해를 촉진하거나 침전물을 가둬 수질악화를 야기하는 등 어류나 다른 식물의 생존에 악영향을 미친다. 특히 이러한 생태계 교란은 토착 식생의 탄소 저장 기 능을 저해하여 자연 기반 탄소중립 목표 달성에 부정적 영향을 미칠 수 있다. 본 연구는 Maxent를 활용한 물여뀌바늘의 국내 잠재서식지 분포를 예측하기 위해 수행되었다. 전 세계 물여뀌바늘 출현지점 및 연평균 기온, 평균 일교차, 등온성, 연간 강수량, 가장 습한 달의 강 수량, 가장 건조한 달의 강수량을 활용하여 현재(1970-2000)와 미래(SSP5-8.5, 2050s)의 국내 잠재서식지 분포 지역을 도출하였다. 출현지점 자료는 자기상관의 영향 최소화를 위해 10km 공간적 희소화를 적용한 자료를 사용하였다. 모델의 성능인 AUC 값은 0.864로 적합하게 나 타났으며, 잠재서식지 예측에 연평균 기온이 가장 중요한 환경 요인으로 나타났다. Maxent 모형 분석 결과, 현재는 전라도와 동해안 지역이 물여뀌바늘의 잠재서식지 적합성이 가장 높 은 것으로 나타났으며, 현재 한국의 잠재서식지 적합도 평균값은 0.3606으로 나타났다. 미래 에는 물여뀌바늘이 경상북도까지 확산될 것으로 나타났으며, 미래의 잠재서식지 적합도 평균 값은 0.4542로 현재 대비 약 25.96% 증가한 것으로 나타났다. 이는 전체적으로 한국이 물여 뀌바늘의 서식에 적합한 환경으로 변화할 것으로 예측되다.

** 본 연구는 농림식품기술기획평가원(RS-2025-02304278), 농림식품기술기획평가원의 농식품 과학기술 융합형 연구인력양성사업(RS-2024-00400922)의 지원으로 수행되었다.

MaxEnt를 이용한 좀들묵새(*Vulpia octoflora*)의 국내 서식 적합도 및 분포 변화 예측

공시은^{p1,2}, 이용호^{2,3}, 구인경^{1,2}, 전우찬^{1,2}, 유남곤^{1,2}, 임정은^{1,2}, 허예진^{1,2}, 프라딥 아디카리², 포우델 아닐², 프라밧 아디카리², 이동욱², 홍선희^{c1,2}

¹한경국립대학교 식물자원조경학부 ²인문생태융합리질리언스연구실 ³고려대학교 오정리질리언스연구소

좀들묵새(Vulpia octoflora)는 북아메리카 원산으로 벼과의 한해살이풀이다. 좀들묵새는 무 성생식을 통해 적은 개체로 빠르게 확산하는 특징이 있다. 이러한 높은 종자 확산력은 기후 변화에 따른 서식 환경 변화와 맞물려 국내 생태계에 광범위한 침입 위험을 높인다. 미국, 유 럽, 호주 등에서 곡물 생산량을 감소시키는 위해식물로 취급되고 있어, 잠재 위험을 내포한 다. 따라서 탄소중립 시대의 생태계 회복탄력성을 확보 및 지속가능한 관리 체계 구축을 위 해 좀들묵새의 미래 분포 변화와 서식 적합도 예측이 필요하다. 본 연구는 전 세계 좀들묵새 출현 데이터를 MaxEnt 모델에 적용하여 기후변화에 따른 국내 서식 적합도 및 분포 변화를 확인하였다. 또한 공간적 가지 상관을 최소화하기 위해 10 km 공간적 희소화를 하였다. 기후 변화 시나리오는 SSP5-8.5를 이용하였으며, 시점은 현재(1970-2000)와 미래(2041-2060) 2가지 로 나누었다. 생물기후인자는 연평균 기온, 평균 일교차, 등온성, 연간 강수량, 가장 습한 달의 강수량, 가장 건조한 달의 강수량을 사용하였다. MaxEnt 모델의 성능은 AUC 0.894로 적합 한 것으로 나타났으며, 변수 기여도 분석 결과 연평균 기온이 가장 큰 영향을 미치는 변수로 확인되었다. 분포 변화 예측 결과, 현재 평균 서식지 적합도는 약 0.41로 대전, 광주, 충청북 도에 부포가 가능한 것으로 나타났다. 미래(SSP5-8.5, 2050s)에서는 전국 평균 서식지 적합 도가 0.45로 현재보다 9.76% 증가하였고, 대전, 충청북도, 세종으로 분포지가 이동할 것으로 예측되었다.

** 본 연구는 농림식품기술기획평가원(RS-2025-02304278), 농림식품기술기획평가원의 농식품 과학기술 융합형 연구인력양성사업(RS-2024-00400922)의 지원으로 수행되었다.

MaxEnt를 이용한 외래식물 염소풀(Aegilops cylindrica)의 국내 잠재 서식지 분포 예측

임정은 p1,2 , 이용호 2,3 , 구인경 1,2 , 전우찬 1,2 , 공시은 1,2 , 유남곤 1,2 , 허예진 1,2 , 프라딥 아디카리 2 , 포우델 아닐 2 , 프라밧 아디카리 2 , 이동욱 2 , 홍선희 c1,2

¹한경국립대학교 식물자원조경학부 ²인문생태융합리질리언스연구실 ³고려대학교 오정리질리언스연구소

염소풀(Aegilops cylindrica)은 유럽이 원산지인 벼과의 일년생 초본식물로 현재 전 세계로 확산중이며, 밀 보리와 같은 주요 작물과 유사한 생리적 특성을 지녀 방제가 어렵다. 또한 다 량의 종자를 생산하고 기후변화에 빠르게 적응할 수 있다. 농경지 내에서 염소풀의 확산은 토착 식생을 대체하여 생태계 균형을 교란시키며, 장기적으로 경작지의 탄소 저장 기능을 약 화시켜 기후변화 대응과 탄소중립 달성에 부정적인 영향을 줄 수 있다. 본 연구는 전 세계 염 소풀 출현 데이터를 MaxEnt 모델에 적용하여 국내 잠재 서식지를 현재 및 미래 기후 조건에 서 예측하였다. 기후변화 시나리오는 SSP5-8.5를 이용하였으며 현재(1970-2000), 미래(2041-2060) 2가지의 시간대로 나누고 생물기후인자는 연평균 기온, 일평균 기온차, 등온성, 연강수 량, 가장 습한 달 강수량, 가장 건조한 달 강수량을 사용하여 잠재 서식지 분포를 예측하였다. MaxEnt 모델의 성능은 AUC 약 0.89로 적합한 것으로 나타났으며, 변수 기여도 분석 결과는 연평균 기온이 가장 큰 영향을 미치는 변수로 확인되었다. 국내 잠재 서식지 분포 예측 결과, 현재 기후 조건에서 염소풀은 동해안과 서해안 농경지를 중심으로 넓게 분포할 가능성이 나 타났으며 서식지 적합도는 약 0.38로 확인되었다. 반면, 미래 SSP5-5.8(2050s)에서는 서식지 가 축소되어 경상북도와 서해안 일부 농경지에서만 분포할 것으로 예측되었으며 서식지 적합 도는 약 0.33으로 감소하였다. 본 연구는 염소풀의 기후변화에 대한 대응전략을 수립하는 데 활용 가능할 것으로 예상된다.

** 본 연구는 한국임업 진흥원(RS-2025-02253003), 농림식품기술기획평가원의 농식품 과학기술 융합형 연구인력양성사업(RS-2024-00400922)의 지원에 의해 수행되었음

Comparative ecotoxicological responses of two marine diatoms to ten heavy metals

Hojun Lee^{p1,2,3}, Heesang Shin², Taejun Han^{1,2,3}, and Jihae Park^{c1,2,3,4}

¹Marine@UGent Korea, Ghent University Global Campus, Incheon 21985, Korea ²Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Incheon 21985, Korea

³Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium

⁴Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, Incheon 21985, Korea

Heavy metal contamination poses a significant threat to marine ecosystems, necessitating reliable bioindicators for ecotoxicological assessment. This study compared the responses of a benthic (*Cylindrotheca closterium*) and a planktonic (*Thalassiosira weissflogii*) diatom to ten metals (As, Cr⁶⁺, Cu, Hg, Sb, Cd, Cr³⁺, Ni, Pb, Zn) under 48-h chronic exposure. Growth inhibition, photosynthetic efficiency (Fv/Fm), and lipid body accumulation were quantified to establish concentration–response relationships and derive ecotoxicological thresholds. Clear endpoint-specific patterns were observed. Based on EC₅₀ values for growth, both species were most sensitive to Cu and Hg. Lipid-based responses highlighted broader sensitivity: *C. closterium* responded strongly to As, Cu, Hg, Cd, and Cr³⁺, whereas *T. weissflogii* exhibited heightened lipid accumulation across most metals, indicating its overall susceptibility at the cellular stress level. These results demonstrate that *C. closterium* provides consistent and reliable responses, making it a suitable early-warning indicator, while *T. weissflogii* reveals complementary information for long-term or sublethal monitoring. The combination of multiple endpoints and contrasting diatom lifestyles enhances resolution in ecotoxicological monitoring and supports refinement of water quality guidelines for metal pollution.

Corresponding author E-mail: jihae.park@ghent.ac.kr

Species sensitivity distributions highlight taxon-specific drivers of ecological risk: comparative assessment of fipronil and triclosan using diatom chronic endpoints

Hojun Lee^{pc1,2,3}, Soyeon Choi², Alfredo MayorgaVillalobos², Eui Seong Kim², Heesang Shin², Taejun Han^{1,2,3}, and Jihae Park^{c1,2,3,4}

¹Marine@UGent Korea, Ghent University Global Campus, Incheon 21985, Republic of Korea ²Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, Incheon 21985, Republic of Korea

> ³Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Gent, Belgium ⁴Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, Incheon 21985, Republic of Korea

Species Sensitivity Distributions (SSDs) offer a robust framework for deriving protective ecological thresholds, yet the taxa and endpoints included can strongly shape the outcome. We conducted 7-day chronic assays with the freshwater diatom Cyclotella meneghiniana, applying chlorophyll fluorescence and lipid body accumulation as sublethal endpoints to evaluate the toxicity of Fipronil and Triclosan. Fipronil induced effects at relatively high concentrations, with EC₅₀ values of 10.75 mg/L for fluorescence and 22.51 mg/L for lipid, whereas Triclosan caused marked responses at 0.195 mg/L and 0.441 mg/L, respectively. Endpoint choice influenced diatom thresholds, with fluorescence consistently more sensitive than lipid accumulation. To place these results in a broader ecological context, SSDs were constructed using multiple aquatic taxa, including algae, macrophytes, and cladocerans. For Fipronil, the HC₅ derived from diatom-only data (0.0417) mg/L) was substantially higher than the multi-taxa value (0.0012 mg/L), a 35-fold difference driven by the high sensitivity of cladocerans. In contrast, Triclosan produced nearly identical HCs values between diatom-only (0.0189 mg/L) and multi-taxa SSDs (0.0219 mg/L), indicating that diatoms alone may capture the protective threshold for certain antimicrobial agents. These findings underscore that while diatom endpoints provide valuable mechanistic and sensitive indicators of stress, multi-taxa SSDs remain essential for chemicals where consumers dominate community-level sensitivity. Together, the results demonstrate the dual role of diatom-based assays as early-warning tools and as contributors to SSD frameworks that define precautionary thresholds for ecological risk assessment.

Corresponding author E-mail: Hojun.Lee@ugent.be

Combined effects of bisphenol A and micro-polystyrene beads in the brackish water flea *Diaphanosoma celebensis*

Yuna Seon^p, Young-Mi Lee^c

Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea

Bisphenol A (BPA), a well-known endocrine-disrupting chemical, is widely used as a plastic additive and often co-occurs with microplastics in aquatic environments. This study evaluated the single and combined effects of BPA and polystyrene (PS) beads (6 μm and 0.05 μm) on the brackish water flea *Diaphanosoma celebensis* at both physiological and molecular levels. In acute toxicity tests, BPA exposure resulted in a 48 h-LC₅₀ of 12.772 mg/L, while co-exposure with PS beads caused slight, size-dependent shifts. In chronic toxicity tests, high concentrations of BPA (≥500 μg/L) significantly reduced total offspring production, and the highest concentration (5000 μg/L) delayed reproduction. At the molecular level, exposure to BPA alone or in combination with PS beads induced transcriptional changes in genes associated with endocrine signaling, energy metabolism, and digestive enzymes. Collectively, these findings demonstrate that BPA disrupts reproduction and energy balance in *D. celebensis*, and that co-exposure with microplastics can further alter its toxicity. This study underscores the importance of considering combined pollutant exposures when assessing the potential ecological risks of contaminants in aquatic ecosystems.

Corresponding author E-mail: ymlee70@smu.ac.kr

Single and combined effects of acetaminophen and polystyrene beads on the detoxification system of the brackish water flea *Diaphanosoma celebensis*

Yeln Kim^p, Je-Won Yoo, and Young-Mi Lee^c

Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea

Plastics and pharmaceuticals are major pollutants in aquatic ecosystems, but their combined effects on marine organisms remain unclear. Polystyrene is one of the most frequently detected microplastics in marine environments, while acetaminophen is a commonly used analgesic often found in water bodies. This study evaluated the effects of acetaminophen alone and in combination with polystyrene microplastics (0.05 μm and 6 μm) on the survival and detoxification system of Diaphanosoma celebensis.In a 48-hour acute toxicity test, the LC₅₀ for acetaminophen exposure was 124.90 mg/L (C.I. 96.11–159.36 mg/L). Co-exposure with polystyrene reduced LC₅₀ to 76.71 mg/L (C.I. 58.78–97.60 mg/L) for 0.05 μm and 88.32 mg/L (C.I. 71.41–109.02 mg/L) for 6 μm, confirming that microplastics enhance acetaminophen toxicity. The stronger reduction observed in the 0.05 μm group indicates that smaller particles exert a greater toxicity-enhancing effect. Co-exposure also altered the expression of cytochrome P450 (CYP) genes, suggesting a distinct toxicological mechanism compared to single exposure. These results provide baseline data for environmental risk assessment of pharmaceuticals and microplastics in marine ecosystems.

Corresponding author E-mail: ymlee70@smu.ac.kr

Candidate molecular biomarkers of bacterial responses to toxicants: A multi-omics study on *Curvibacter cyanobacteriorum* HBC61

Seonah Jeong^{p1,} Hayoung Lee^{1,2}, Minjae Son¹, So-Ra Ko¹, Won-Suk Choi^{1,2}, and Chi-Yong Ahn^{c1,2}

¹Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB),
Daejeon, Republic of Korea

²University of Science and Technology, KRIBB School, Daejeon, Republic of Korea

This study aimed to identify molecular biomarkers associated with bacterial responses to environmental pollutants, focusing on arsenic (As), cadmium (Cd), and triclosan (TCS). Sensitivity assays were conducted using seven strains, including three Curvibacter spp., three Undibacterium spp., and Escherichia coli DH5α. Based on growth assays on R2A agar supplemented with the pollutants and availability of whole-genome sequence resources, the resistant strain Curvibacter cyanobacteriorum HBC61 was selected for transcriptomic and proteomic analyses. The strain was exposed to As (50 ppm), Cd (10 ppm), and TCS (50 ppb) for 12 h and 24 h, and molecular markers differentially expressed under pollutant exposure were identified. Under As exposure, ACR3 family arsenite efflux transporter and arsenate reductase ArsC were highly upregulated; Cd exposure led to the upregulation of TolC family proteins and heavy-metal efflux RND transporters; and TCS exposure activated stress-response proteins such as ClpB and Hsp20/α-crystallin. Multivariate transcriptome analyses revealed distinct clustering of TCS- and Cd-treated samples, while As-induced responses developed gradually over time. These findings highlight candidate molecular biomarkers for evaluating bacterial responses to toxicants and support the development of bioindicator-based monitoring tools in aquatic ecosystems.

Corresponding author E-mail: cyahn@kribb.re.kr

Omega class glutathione S-transferase (GSTO) from the diatom Fragilaria saxoplanctonica: Characterization and pesticide-specific transcriptional response

Jin-joo Hong^p and Jang-Seu Ki^c

Department of Life Science, Sangmyung University, Seoul 03016, Korea

Glutathione S-transferases (GSTs) are key to detoxification in diatoms, widely used as bioindicators of water quality. While well-studied in animals and plants, microalgal GSTs are poorly understood, especially the uncharacterized omega-class (GSTO). We characterized a novel omega-like GST (FsGST) from the diatom Fragilaria saxoplanctonica and assessed its transcriptional response to pollutants. Its complete open reading frame (ORF) was identified, followed by structural and phylogenetic analysis. Using qRT-PCR, we measured responses to six heavy metals and three pesticides. Results classify FsGST into a novel omega-like class. While unresponsive to most metals (except zinc), FsGST expression was significantly upregulated by all three pesticides, peaking at a 4.6-fold induction by metolachlor. Notably, this response occurred at sub-lethal levels (e.g., EC10 for chlorpyrifos), showing high sensitivity. These findings establish FsGST as a specific, sensitive molecular biomarker for pesticide contamination. Further work will evaluate its response to a broader pesticide range and assess its applicability for in-situ monitoring.

Ascorbate peroxidase (APX) gene in the freshwater diatom Fragilaria saxoplanctonica and environmental implications

Suhwa Lee^p, and Jang-Seu Ki^c

Department of Life Science, Sangmyung University, Seoul 03016, Korea

The growth of industry and agriculture has resulted in pollutants, such as heavy metals and pesticides, entering aquatic ecosystems and causing oxidative stress to the organisms living in them. These organisms have evolved cellular defence systems to counteract this, with ascorbate peroxidase (APX) being one of the antioxidant enzymes that respond to such stress. However, the molecular aspects of APX in freshwater diatoms are not well understood. This study identified the *APX* gene in the freshwater diatom *Fragilaria saxoplanctonica* and examined how its expression altered following exposure to six heavy metals and three pesticides using Real-Time PCR (qRT-PCR). The results revealed a significant increase in *APX* expression in response to arsenic and zinc among the heavy metals, with no significant changes observed for the other heavy metals. Furthermore, a significant increase in expression was observed for all three pesticides. These results imply that the *APX* gene of *F. saxoplanctonica* is sensitive to certain heavy metals and pesticides, indicating its potential use as an effective biomarker in future aquatic environmental monitoring.

Two novel superoxide dismutases (SODs) in the freshwater diatom *Fragilaria saxoplanctonica* and their specific responses to pollutants

Hee Jin Kang^p, and Jang-Seu Ki^c

Department of Life Science, Sangmyung University, Seoul 03016, Korea

Superoxide dismutase (SOD) is a key antioxidant enzyme that plays primary defense system against reactive oxygen species (ROS). While the biochemical responses of SOD to contaminants have been studied in various microalgae, the molecular structure and regulatory mechanisms of SOD genes in freshwater diatoms remain limited. This study identified and characterized two novel SOD genes, FsMnSOD and FsCuZnSOD, from Fragilaria saxoplanctonica. We analyzed their sequences, structures, evolutionary origins, and transcriptional responses to heavy metals and pesticides. FsMnSOD retained conserved metal-binding residues, while FsCuZnSOD's metal-binding site residues were highly conserved only in diatoms. Phylogenetic relationships showed a bacterial origin for both FsSODs and a close relationship with dinoflagellates. Both FsSODs significantly increased expression when exposed to arsenic (up to 5.8-fold), zinc (up to 4.8-fold), and metolachlor (up to 3.0-fold). These findings suggest FsSODs play crucial role in F. saxoplanctonica's defense system against oxidative stress from specific contaminants (As, Zn, MOC). Their specific and sensitive transcriptional responses present their potential as biomarkers for molecular toxicity assessment of As, Zn, and MOC in freshwater ecosystems.

Effects of leaching conditions on the toxicity of plastic leachates in brackish water flea *Diaphanosoma celebensis*

Yeln Kim^p, YuNa Seon, SeungByeong Chae, SuYeon Lim, SeoJin Hong, DaEun Jeoung, ChanWoo Park, and Young-Mi Lee^c

Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea

Plastics are increasingly used worldwide; however, once released into the environment, they undergo fragmentation into smaller particles through ultraviolet radiation, waves, and biological processes. Their associated additives, such as plasticizers, flame retardants, and stabilizers, can exert toxic effects, posing threats to ecosystems and human health. Although zooplankton play a crucial role in the ecosystem as primary consumers, little information is available on the effects of plastic leachates in marine zooplankton. This study examined the effects of plastic leachates (PP, PLA, PE, and EPS), generated through 72 h of leaching at 25°C and 30°C, on the brackish water flea Diaphanosoma celebensis after 48 h of exposure, focusing on survival rate and the transcriptional modulation of genes related to antioxidant defense, reproduction, and stress response. As a result, all plastic leachates showed no significant effects on the survival rate. However, temperature-dependent effects of the leachates were observed in the gene expression profiles. All plastic leachates generated at 25°C strongly modulated heat shock genes, whereas EPS leachates additionally upregulated the expression of EcR and cyp314a1. In the case of leachates produced at 30°C, higher gene expression levels were observed, particularly for antioxidant- and stress-related genes in the PP leachates. These findings suggest that plastic leachates, with distinct chemical components, can disrupt redox homeostasis and reproduction in marine zooplankton, and that such effects may be amplified under climate change-driven temperature increases, highlighting the need for further studies on their chronic impacts.

Corresponding author E-mail: ymlee70@smu.ac.kr

First report of a cytosolic *Gtt2*-class glutathione S-transferase in *Alexandrium pacificum* and its role under algicidal exposure

Taehee Kim^p, Han-Sol Kim, Buhari Lawan Muhammad, and Jang-Seu Ki^c

Department of Life Science, Sangmyung University, Seoul 03016, Korea

This study identified a cytosolic glutathione S-transferase (GST) gene, Gtt2, from the marine dinoflagellate Alexandrium pacificum and assessed its short-term transcriptional responses under diverse algicidal chemicals. The full-length ApGtt2 cDNA was 1,306 bp, and it included a 785-bp intron in the genomic region. The gene encoded a 289-amino-acid protein with a predicted mass of 32.76 kDa. Futher molecular analyses revealed an N-terminal thioredoxin-fold domain, consistent with the feature of cytosolic GSTs. Phylogenetic analysis showed that ApGtt2 was placed in the Gtt2 lineage, distinct from other GST classes previously described. Algacidal chemical treatments differentially affected ApGtt2 expression: transcripts increased 2.5-fold after 6 h at 0.05 mg/L metazachlor (MZC) and 7.7-folds after 6 h at 0.1 mg/L sodium hypochlorite (NaOCl). Both MZC and NaOCl also elevated intracellular reactive oxygen species (ROS) and enhanced GST activity. Collectively, these results indicate that ApGtt2 contributes to reduce the oxidative-stress and detoxificate the diverse pollutants in A. pacificum. To our knowledge, this is the first report of a Gtt2 in a marine dinoflagellate; further studies are needed to understand its molecular defense mechanisms.

Rosmarinic acid-based profiling and genotoxicity evaluation of *Perilla frutescens* leaves from major Korean regions

Je-Ho Lee^{p1}, Mi-Yeong An¹, EunJi Ko¹, Gyung-Tae Ban¹, Young-Yil Kim^{c1}, and Jong-Soon Choi^{c2}

¹Daehan Cell Pharm INC, Guri, Republic of Korea ²Digital Omics Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea

Perilla frutescens var. japonica, an annual plant in the Lamiaceae family, has long been used as both food and medicine in East Asia. Recently, it has attracted considerable attention as a functional food material due to its rich content of antioxidant compounds, including luteolin, quercetin, caffeic acid, and rosmarinic acid (Yamazaki & Saito, 2006; Asif, 2012). In this study, we analyzed the rosmarinic acid content in Perilla leaf samples collected from three major cultivation regions in Korea—Geumsan, Miryang, and Jeolla Province—and found the highest level in the Jeolla sample. A 70% ethanol extract of the Jeolla sample was further evaluated for safety using genotoxicity tests (Ames test, Chromosomal aberration test, Micronucleus test) and an acute oral toxicity test. The extract showed neither toxicity nor genotoxic effects. In parallel, functional ingredients such as Boswellia extract and MSM are increasingly in demand in Korea for joint health (FoodNavigator-Asia, 2022). The global perilla extract market is projected to reach USD 2 billion by 2032 (Coherent Market Insights, 2023), while Korea's functional food market hit KRW 5 trillion in 2023 (Statista, 2024). These findings highlight the potential of Perilla leaves as a safe, functional food ingredient, particularly for joint health applications.

Corresponding author E-mail: jschoi@kbsi.re.kr

Establishment of a standardized liquid-phase administration system in *Drosophila melanogaster* for reproducible evaluation of biological resources

Chul-Min Park^p, Bohyun Yun, Yeong-Seon Won, and WonWoo Lee^c

Division of Practical Research, Department of Integrative Bioresources, Honam National Institute of Biological Resources, Mokpo-si, Jeollanam-do 58762, Korea

The increasing demand for animal replacement research technologies, guided by the 3R principle (replacement, reduction, refinement), underscores the need for robust, standardized, and reproducible alternative models. Drosophila melanogaster (D. melanogaster) is a powerful model organism for preclinical assessment of functional biological resources owing to its genetic tractability, short life cycle, and conserved physiological pathways. Despite these advantages, common administration methods such as feed mixing, solid form feeding, and paper filter delivery are often inconsistent and lack a unified framework, which limits reproducibility and comparability across studies. To address these methodological limitations, we developed a standardized experimental system for liquid phase administration of biological resources in D. melanogaster. The system integrates controlled rearing conditions, validated intake confirmation, optimized concentration determination, and a stepwise efficacy evaluation protocol to provide a structured and reproducible approach for in-vivo testing. A pipette-based liquid delivery method was implemented to ensure precise dosing and uniform exposure while preserving fly viability. The platform also incorporates long-term monitoring modules, including survival tracking, quantitative behavioral analysis, and systematic mortality recording, enabling a comprehensive assessment of biological outcomes. The application of standardized in-vivo screening at initial discovery phases enables the platform to provide a scalable, reproducible, and ethically aligned framework that facilitates the systematic discovery, functional characterization, and translational application of biological resources in both research and industrial settings.

Corresponding author E-mail: 21cow@hnibr.re.kr

Inhibitory effects of prodigiosin derived from *Vibrio ruber* on skin pathogens

Hye Seon Song^p, Seunghui Song, Nakyeong Lee, Sangdon Ryu, Jina Lee, Sung Moon Lee, Yun Ji Kim, Se Won Chun, and Aslan Hwanhwi Lee^c

Division of Environmental Materials, Honam National Institute of Biological Resources (HNIBR), 99 Gohadoan-gil, Mokpo 58762, Republic of Korea

This study focuses on the antibacterial activity of prodigiosin derived from Vibrio ruber isolates (VRB1, VRB2, and VRB3), which were obtained from Artemisia fukudo collected in Imja-myeon, Sinan-gun, South Korea. V. ruber is a marine bacterium with a remarkable ability to synthesize prodigiosin, a red tripyrrole pigment of pharmacological interest due to its antimicrobial, anticancer, and biocidal properties. In this study, the antibacterial potential of prodigiosin from the three V. ruber isolates was evaluated against clinically significant skin pathogens: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes. Prodigiosin was extracted from lyophilized biomass using methanol extraction and tested by the disc diffusion assay, which revealed distinct inhibitory zones against all target strains. Qualitative and quantitative analyses using UV-Vis spectrophotometry and high-performance liquid chromatography (HPLC) confirmed the pigment identity, showing a characteristic absorption peak at 534 nm. Notably, the three V. ruber isolates exhibited substantially higher prodigiosin yields (VRB1: 81.0 ppm, VRB2: 65.8 ppm, VRB3: 68.8 ppm) compared to Serratia marcescens KCTC42171 (2.21 ppm), indicating their superior biosynthetic capacity. Among them, VRB1 demonstrated the highest pigment production. These findings demonstrate that prodigiosin from V. ruber possesses strong antimicrobial activity against skin-associated pathogens and highlight its potential as a promising candidate for the development of novel antimicrobial agents.

Corresponding author E-mail: aslan.lee@hnibr.re.kr

한국 연안 해양산성화가 취약 해양생물에 미치는 영향

정세미, 정여진, 남정호

한국해양수산개발원

해양산성화는 산업화 이후 지속적인 대기 중 이산화탄소 증가로 인해 전 지구적으로 가속 화되고 있으며, 이는 한국 연안의 주요 해양 생물에 중대한 위협으로 작용하고 있다. 본 연구 는 「해양산성화 대응 가이드라인」보고서의 분석을 바탕으로, 한국 해역에서 경제적·생태적 중요성이 높은 성게, 전복, 굴, 홍합을 중심으로 취약성을 고찰하였다. 성게(Mesocentrotus nudus 등)는 석회질 골격을 지닌 극피동물로, pH 7.7 이하에서는 서식이 어려운 것으로 보고 되었다. 기후변화 시나리오(SSP3-7.0, SSP5-8.5)에 따르면, 2100년경에는 한국 연안 대부분이 임계값 이하로 하락하여 성게 개체군의 급격한 감소가 예상된다. 전복(Haliotis discus hannai) 은 pH 7.6 이하에서 생존이 제한되며, 서해안에서의 서식이 장기적으로 불가능할 것으로 전 망된다. 이에 따라 전복 자원의 안정적 공급과 양식업 지속 가능성이 크게 위협받을 수 있다. 굴(Crassostrea gigas)은 상대적으로 강한 내성을 보이지만, 유생기 성장률은 pH 7.8 이하에서 급격히 감소하여 장기적인 생산성 저하가 우려된다. 홍합(Mytilus galloprovincialis)은 낮은 pH 환경에서도 비교적 높은 생존율을 유지하나, 산성화와 수온 상승, 오염물질 유입 등 복합 스트레스 요인에 의해 생산성과 생태계 서비스 기능이 저하될 가능성이 있다. 이와 같은 결 과는 해양산성화가 단순한 화학적 변화에 그치지 않고, 해양 생물의 생리·생태적 반응, 먹이 망 구조, 그리고 연안 수산업의 지속가능성 전반에 심대한 영향을 미친다는 것을 보여준다. 따라서 한국 연안 생태계 보전과 수산업의 회복력 강화를 위해, 종별 pH 내성 연구 확대, 내 산성 품종 개발, 연안 완충지대 조성(바다숲·잘피밭 복원) 등의 과학적·정책적 대응이 필요하 다. 본 연구는 해양산성화 대응을 위한 국가 전략 수립에서 생물 중심적 접근의 필요성을 강 조하며, 향후 지속가능한 연안 관리와 양식업 정책 수립의 기초자료로 활용될 수 있다.

교신저자 E-mail: jeongsemi317@kmi.re.kr

Dual role of corrosion inhibitors: Mitigating steel corrosion and enhancing insecticidal effects under seawater exposure

Ho Jin Youn¹, Dong Yeop Lee¹, Hyoung-Ho Mo², Seol Lee³, Hogi Lee⁴, Sangkoo Park⁵, and Min-Hyuk Oh^{pc1}

¹Yeongnam Regional Office, Animal and Plant Quarantine Agency, Busan, 48751 Korea ²Jungbu Regional Office, Animal and Plant Quarantine Agency, Incheon, 22133 Korea ³Gwangyang District Office, Animal and Plant Quarantine Agency, Gwangyang, 57772, Korea ⁴International Plant-quarantine Accredition Board, Busan, 48400, Korea ⁵Seoul Regional Office, Ministry of Food and Drug Safety, Seoul, 07978 Korea

In recent years, the detection of invasive ant species such as Paratrechina longicornis has increased in port areas in port areas with high international trade activity. To reduce the introduction of exotic ants via logistics, our research team has been developing a seawater-based control technique designed to alter the habitat conditions of these invasive species. In this study, we investigated the effects of seawater spraying on iron corrosion and identified corrosion inhibitors to mitigate these effects. Corrosion reactions were observed in both freshwater and seawater treatments, whereas no significant corrosion was detected in the salt crystal treatment. This corrosion phenomenon occurred across all tested steel types low-carbon steel (0.05–0.25% C), medium-carbon steel (0.25–0.6% C), and high-carbon steel (0.6–1% C)—with low-carbon steel being most susceptible. Notably, zinc-coated low-carbon steel exhibited a significant reduction in corrosion. To suppress corrosion, we screened various inhibitors and identified three effective inhibitors: sodium molybdate, calcium gluconate, and sodium silicate. Interestingly, the addition of these inhibitors not only reduced corrosion but also enhanced the insecticidal effect of seawater against *Tetramorium tsushimae*, potentially by accelerating dehydration. These findings suggest that corrosion inhibitors can serve a dual function—preventing iron corrosion and enhancing seawater's efficacy as an eco-friendly alternative to chemical insecticides.

Corresponding author E-mail: minhoh@daum.net

Cultivation strategy to improve growth and eicosapentaenoic acid (EPA) production of *Nannochloropsis oceanica* cultivated under different temperatures and light sources

Kyong Ha Han^{p1,2}, Bum Soo Park¹, and Hyeon Ho Shin^{c2}

¹Department of Environmental Sciences, Hanyang University, Seoul 04763, Korea ²Department of Fisheries Life Science, Pukyong National University, Busan 48574, Korea

To propose strategy for commercial cultivation of a Korean strain *Nannochloropsis oceanica*, the growth and fatty acid content of N. oceanica cultures exposed to different temperatures and light sources were investigated. The growth responses of N. oceanica exhibited a wide temperature range of 5-30°C, with the maximum cell density at 25°C, and biomass production as measured by dry weight in N. oceanica culture was the highest at 20°C. In N. oceanica cultures exposed to relatively low temperature (5-10°C), cells did not grow significantly, but the proportion of polyunsaturated fatty acids (PUFAs), including EPA, was significantly high. With respect to light conditions, significant growth of N. oceanica was observed at 20°C under blue (450 nm), red (620 nm) and white (cool-white fluorescent; control) light, whereas growth with relatively low densities was observed in N. oceanica cultured under purple (415 nm) and yellow (592 nm) light. EPA was the most dominant under the yellow and red light with N. oceanica exhibiting relatively low biomass dry weight and growth rates. In conclusion, temperature- and light-dependent two-stage cultivation strategy is proposed to optimize both biomass and EPA production in N. oceanica cultures: an initial phase under white or blue light at 20°C to achieve high biomass, followed by a second phase under red or yellow light at 5-10°C to maximize EPA accumulation. These findings provide a basis for large-scale cultivation systems and support the commercial application of N. oceanica as a sustainable source of EPA.

Corresponding author E-mail: shh961121@pknu.ac.kr

미세조류를 활용한 시멘트 공장 배가스 저감 가능성 평가

정성진^{p1}, 이상아^{c1,2}

¹제주대학교 생명자원과학대학 생명공학부 바이오소재전공 ²제주대학교 차세대융복합대학원

기후 위기의 가속화로 인해 온실가스 저감 기술의 필요성이 점점 더 강조되고 있으며, 특히 전 세계 인위적 CO₂ 배출량의 약 8%를 차지하는 시멘트 산업은 대표적인 배출원으로 지목되고 있다. 시멘트 공장 배가스에는 이산화탄소(CO₂) 외 질소산화물(NO_x), 황산화물(SO_x) 등이 포함 되어 있으며, 미세조류는 이산화탄소 저감능이 있으나, NOx와 SOx에는 성장 저해를 받는다. 본 연구의 최종 목표는 미세조류 기반 시멘트 공장 배가스 CO2 저감 시스템 개발이며, 그 일환으 로 단일 및 혼합배양 조건에서의 성장률 및 제거 효율을 검증했다. Chlorella sorokiniana(CS), Chlorella vulgaris(CV), Chlamydomonas sp.(CH), Desmodesmus multivariabilis(DM) 등 4종을 대상으로 직렬형 Photobioreactor(PBR)를 이용한 단계적 실험을 수행했다. 먼저 단일 배양을 통해 biomass 대비 CO₂ 저감 효율을 산출한 결과, 0.00075g/g-CS, 0.00056g/g-CV, 0.00056g/g-CH, 0.00036g/g-DM으로 측정됐다. 이후 이산화탄소 흡수능 순서로 각 종을 PBR에 접종하고 제작한 인공 배가스를 주입하여 제어능을 검증하였다. 마지막으로 4종 혼합배양을 적용해 고농도 조건에 서 직렬 PBR 실험을 진행한 결과, 단일 배양에 비해 혼합 배양에서 약 1.55배 높은 성장률을 보였으며 특히 배가스의 영향을 가장 크게 받는 첫 번째 PBR에서 약 2배의 성장률 차이를 나타냈다. 또한 일정 시간 CO2 저감 효과를 유지하여 상대적으로 높은 안전성을 보였다. 본 연구는 기후 및 오염 위기에 대응하는 환경 생물 및 생물 공정 공학적 접근으로서, 시멘트 산업에 서 적용 가능한 미세조류 기반 CO₂ 저감 기술의 가능성을 확인한 연구이다.

교신저자 E-mail: leesa@jejunu.ac.kr

해양식물플랑크톤자원 기탁등록보존기관

윤주연^{p1}, 신현호^{c2}

¹부경대학교 수산과학연구소 ²부경대학교 양식응용생명과학전공

해양 생태계의 기초생산자인 해양식물플랑크톤은 탄수화물, 지방산, 단백질 등 다양한 생리활성 물질을 포함하고 있는 중요한 생물자원으로, 이산화탄소 고정 및 수질 정화능, 바이오연료와 의약품 소재 생산 등 해양 생명산업뿐만 아니라 다양한 분야에 활용되고 있다. 이러한이유로 국외의 여러 기관에서는 약 40년 전부터 해양식물플랑크톤자원을 확보하여 체계적, 안정적으로 보존/관리하고 있으며, 우리나라의 경우, 현재 "해양생명자원의 확보, 관리 및 이용 등에 관한 법률"에 의거하여 "해양식물플랑크톤 기탁등록보존기관"을 국립부경대학교 양식응용생명과학전공에 구축하여 운영 중에 있다. 현재, 해양식물플랑크톤자원 기탁등록보존기관에는 에너지 자원, 건강식품 등에 활용되는 다양한 식물플랑크톤을 포함하여 약 1,900 배양주가 웹기반 해양식물플랑크톤 배양주 관리시스템을 통하여 안정적/체계적으로 보존, 관리되고 있다. 분양의 활성화를 위하여 홈페이지를 구축하여 운영 중이며 자원 분양을 통해 산업 및 연구 지원에 기여하고 있다.

교신저자 E-mail: shh961121@pknu.ac.kr

Optimization of culture conditions to enhance biomass and fatty acid yields in *Tetradesmus obliquus*

Suk Min Yun^{pc1}, Daeryul Kwon¹, Su-Bin Park¹, Chang Soo Lee¹, Seung Hwan Lee², Young Hoon Cho², Hyunseok Shin², Seong-Joo Hong³, Huisoo Jang³, Youngjin Ryu³, Chung Hyeon Choi⁴, and Z-Hun Kim⁵

¹Biological Resources Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea

²Department Biotechnology and Bioengineering, Chonnam National University, Gwangju 61186, Republic of Korea

³Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea ⁴Ocean Environment Research, Kunsan, 54133, Republic of Korea ⁵Biotech R&D Center, Hu evergreen Pharm Inc., Incheon 21447, Republic of Korea

Microalgae are widely recognized as efficient producers of fatty acids due to their high photosynthetic activity. They hold great potential as sources of biofuels, animal feed, and various bio-active compounds. This study aimed to optimize culture conditions including medium composition, temperature, and light intensity to enhance both the biomass and fatty acid content of the indigenous freshwater microalga Tetradesmus obliquus. High-throughput photobioreactor experiments identified 25 °C and 300 µmol m⁻² s⁻¹ as the optimal temperature and light intensity, respectively. Additionally, the concentrations of nitrogen, phosphorus, and magnesium in BG-11 medium were optimized, leading to a 37% increase in biomass compared to the standard BG-11 formulation. To investigate the effects of abiotic stress on fatty acid accumulation, cultures were subsequently transferred to nitrogen- and phosphorus-depleted media. Under nitrogen-deficient conditions (N–P⁺ and N–P⁻), fatty acid content significantly increased from 8.5% to 14.6% by day 7 of cultivation. Through this sequential optimization strategy, both biomass and fatty acid productivity were substantially enhanced, with total biomass increasing by up to 83%.

Corresponding author E-mail: horriwar@nnibr.re.kr

조류제거물질 사용에 따른 수환경변화 모니터링

박혜민^{p1}, 문성대^{c1}, 김동권², 김정은³

¹㈜엔이비 ²한국농어촌공사 농어촌연구원 ³㈜동남의화학연구원

기후변화는 하천과 호소에서 녹조 발생 시기를 앞당기고, 지속 기간을 늘리며, 발생 빈도 또한 증가시키는 경향을 보인다. 특히 녹조 대발생(Algae bloom)을 유발하는 남조류는 마이 크로시스틴과 같은 독소를 생산하여 생태계와 공중보건에 부정적인 영향을 미칠 수 있다. 이 에 대한 대응 방안으로 환경부 인증 조류제거물질의 살포가 활용되고 있으나, 현행 인증 과 정에서는 조류제거효율과 생태독성만 평가하고 있어, 조류제거물질 살포에 따른 수환경의 물 리·화학적 변화에 대한 연구는 미흡한 실정이다. 본 연구에서는 실험실 모의실험을 통하여 조 류제거물질이 물리·화학적 수환경에 미치는 영향을 검토하였다. 실험에서는 7종류의 조류제 거물질을 대상으로 연구를 수행하였다. 살포 농도(3단계: 사용농도의 25%, 50%, 100%)에 따 른 총유기탄소(TOC), 총질소(T-N), 총인(T-P), 엽록소-a(Chl-a), 수소이온농도(pH)를 분석하였 으며, 약품 투입 전과 투입 후 4시간·48시간·72시간의 변화를 모니터링하였다. 실험결과, 대 조구 대비 변화율은 TOC 13~209%, T-N 75~513%, T-P 20~282%, Chl-a 4~164%, pH 88 ~121 % 의 범위로 나타났다. 특히 T-N 농도는 전반적으로 무처리 대조구 대비 높은 경향을 보였으며, T-P 항목도 일부 조류제거물질 처리 실험구에서 무처리 대조구 대비 높아지는 경 향을 보였다. 이는 조류제거물질이 단기적으로는 조류제거효과를 보이더라도, T-N, T-P 농도 변화를 유발하여 시간경과에 따라 조류제거효과가 변동될 수 있음을 보여준다. 본 연구는 조 류제거시설 설치·운영 및 살포용 조류제거물질 사용지침 등 하천과 호소의 수질관리 및 제도 개선을 위한 기초자료로 활용될 수 있다.

교신저자 E-mail: neb.sdmoon@gmail.com

Microalgal extract from *Pseudocalidococcus* azoricus KCTC AG61299 as a potential inhibitor of osteoclast formation for osteoporosis therapy

Xu-Dong Lian^{p1,2} and Zhun Li^{c1,3}

¹Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea ²Department of bio-convergence science, Jeonbuk National University, Jeonju 54896, Republic of Korea

³Department of Environmental Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea

Osteoporosis, a prevalent metabolic bone disorder, results from excessive osteoclast activity and subsequent bone resorption. Natural compounds derived from microorganisms have demonstrated potential in modulating osteoclastogenesis. In this study, we investigated the anti-osteoclastogenic effects of Pseudocalidococcus azoricus KCTC AG61299, a newly characterized freshwater cyanobacterial strain. Whole-genome sequencing and bioinformatics analyses identified biosynthetic gene clusters associated with bioactive compound production. Extracts from **KCTC** AG61299 significantly inhibited RANKL-induced differentiation in bone marrow-derived macrophages (BMMs) without exhibiting cytotoxicity. Furthermore, KCTC AG61299 extracts suppressed RANKL-induced actin ring formation in BMMs. Mechanistic studies revealed that the extracts suppressed the expression of key osteoclast-related transcription factors, including NFATc1 and c-Fos, and attenuated the MAPK and Akt signaling pathways. These findings suggest that KCTC AG61299 represents a novel microbial resource for developing natural compound-based interventions for osteoporosis management.

Corresponding author E-mail: lizhun@kribb.re.kr

담수미생물 기능성 정보 데이터의 통계 분석

이창수 $^{\circ}$, 황혜진, 천원수, 문혜연, 박상규, 오유선, 한길, 이상희, 김정태, 허윤정

국립낙동강생물자원관 균류연구부

한국의 담수 생태계에는 균류와 세균을 포함한 다양한 미생물이 서식하며, 이들은 유망한 생물자원으로서 유용 가치를 지니고 있으나 기능적·유전적 정보 부족으로 활용은 제한적이다. 이를 보완하기 위해 "담수 생물소재의 기능성 정보 구축" 연구를 수행하여 항균 활성, 효소기능, 색소 생합성 등 다양한 기능성 데이터를 생산하였다. 총 2,237주(균류 418, 세균 1,819)를 대상으로 한 통계 분석을 통해 유의하게 우수한 분류군을 확인하였으며, 상관관계 분석에서는 항세균 활성과 항진균 활성 간의 유의한 상관성이 나타났다. Trichoderma, Bacillus, Streptomyces, Pseudomonas가 대표적 기능성 균주로 확인되었으며, 특히 Trichoderma는 항균, 유기산 생성능, 아밀라아제, 키틴 분해효소 활성이 높았다. Aspergillus와 Schizophyllum 속은 특정 효소 활성과 항균 활성이 높았으며, Variovorax가 옥신 생성능이 높아 식물 생장 촉진 미생물 소재의 후보군으로 제시될 수 있었다. Bacillus, Streptomyces, Brevibacillus는 항진균 활성이, Bacillus와 Pseudomonas는 항세균 활성이 높았다. 연구 결과를 통해 담수 생물자원 중 유용성이 높은 생물소 재에 대한 기초 정보를 제공할 수 있을 것으로 기대된다.

교신저자 E-mail: cslee@nnibr.re.kr

Livestock manure-originated microbial resources for simultaneous pesticide mitigation and plant growth promotion

Tran Yen Linh Le^{p1}, Junkyung Lee^{p2}, Seung-Ryeol Ko³, Na-Yeon Jo⁴, Hyun-Sik Choi⁵, and Sun-Goo Hwang^{c3}

¹Department of Agricultural Convergence, Sangji University, Wonju-si 26339, Korea ²Department of Applied Plant Science, Sangji University, Wonju-si 26339, Korea ³Department of Smart Life Science, Sangji University, Wonju-si 26339, Korea ⁴Department of Sangji University RISE Center, Wonju-si 26339, Korea ⁵Department of Hoengseong Agricultural technology Extension center, Hoengseong 25208, Korea

Chemical pesticides have played an essential role in maintaining crop productivity by controlling weeds, insect pests, and plant pathogens. However, excessive use has led to adverse consequences, including the deterioration of soil health, contamination of aquatic ecosystems through leaching, and the persistence of residues in soils and crops that may threaten food safety and livestock health. To develop a sustainable solution, we investigated livestock manure as a reservoir of functional microorganisms. From this organic waste, eight microbial strains capable of degrading the organophosphate pesticide phorate were successfully isolated. Notably, one strain, designated *PBL14*, exhibited a dual function by not only degrading pesticide residues but also promoting crop growth. Our findings demonstrate that *PBL14* expands current knowledge of the ecological diversity of livestock manure-derived microbes while providing dual practical value: reducing pesticide-related contamination and enhancing crop growth. This provides important evidence that microorganisms from agricultural waste can serve as novel biological resources for the development of sustainable agricultural practices. Furthermore, the utilization of strains such as *PBL14* contributes to circular agriculture and carbon neutrality, aligning with the goals of green agricultural development in the context of global climate change.

Corresponding author E-mail: sghwang9@sangji.ac.kr

전시 부스(Exhibition)

■ Exhibition

일 자 : 2025. 10. 22.(수) ~ 10. 24.(금)

장 소 : 스위트호텔 남원 그랜드볼룸 앞 1층 로비

■ Booth Layout

■ Booth No. Exhibitors

Booth No.	Exhibitors
1	(주)인트인
2	해양생명자원 기탁등록보존기관
3	국립낙동강생물자원관 담수생물자원은행

2025년 수시 신입/경력직 채용 안내

미래생태(주) 대표, `25.10.21

미래생태(주) 기업과 함께 성장할 참신하고 역량 있는 신입/경력 직원을 공개 채용합니다. 청년이 주인으로 성장하는 기업으로 성장하겠습니다.

☑ 채용분야

채용 분야	채용직급	직무내용
해양 및 담수 환경생태학 0 명	신입/경력직 (학·석사)	 분석실험, 생태환경 조사, R&D 기획 및 보고서 작성 등 미세조류 생태학 경력자 우대 생태 독성 경력자 우대
해양 및 담수 환경생태학 0 명	신입/경력직 (석·박사)	 분석 실험, 생태환경 조사, R&D 기획 및 보고서 작성 등 포닥 경험자 우대 팀장/본부장 급 우대 생태 독성 경력자 우대 빅데이터 및 통계분석 가능자 우대 파이선, R, 코딩 가능자 우대

* 채용 분야와 전공은 반드시 일치하지 않아도 지원 가능함.

□ 급 여

O 연봉 3,600~8,000 만원(면접 후 결정)

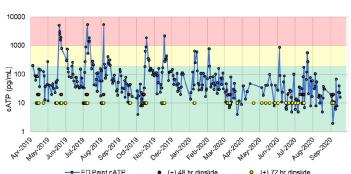
█ 채용조건

- O [신입] 정규직¹⁾
 - 1) 수습 기간을 두며, 수습 기간 중 계약 해지 사유 발생 시 계약을 해지할 수 있음. 수습 기간은 협의로 결정.
- O [경력] 정규직²⁾
 - ²⁾ 3개월 수습기간을 두며, 수습 기간 중 계약 해지 사유 발생 시 계약을 해지할 수 있음.
- 근무조건 및 지역 : 주 5일제(주 40시), 서울시 송파구 가락동 본사
- 급여는 미래생태(주) 관련 규정에 따르며, 경력직은 경력 환산 기준 적용 (복리후생비, 퇴직 금, 성과급 등은 내규에 의거 별도 지급)

∟ 자세한 공고 안내 및 지원 방법

O 잡코리아: 근무환경 및 회사소개 참조 https://www.jobkorea.co.kr/recruit/joblist?menucode=duty&dutyCtgr=10018

PhotonMaster™ Luminometer (2세대 ATP측정 키트)


[PhotonMasterTM Luminometer]

[2nd Generation ATP – Test Kits]

[Microbiological Monitoring]

LuminUltra PhotonMaster™ 2세대 ATP 측정키트

- * 다양한 수질 시료 내 미생물 오염을 실시간으로 정밀 모니터링
- * 공정수 및 초순수 등 고순도 시료에서도 정확하고 재현성 있는 결과 제공
- * 실험실 및 현장 환경에 모두 적합하며, 5분 이내 신속한 데이터 출력 가능
- * 다양한 응용 분야에 맞춤형 전용 시약 키트 선택 가능

응용분야

먹는물(식수), 정제수 냉각수, 반도체 제조업체 폐수, 해수 및 담수 Oil & Grease 및 산업용수 자동차 (도장 및 ED Coatings)

[측정원리 : ATP 효소와의 화학반응]

Luciferase Enzyme (Luminase™)

Light

Luminase Luminase

[기존 미생물 분석 대비 획기적인 시간 절감 – 5분 이내 정량 결과 도출]

QGO-M Test Kit

석유 및 가스 산업 적용

Fuel Test Kit

항공 윤활유

폐수처리장 (생물반응조)

식수, 초순수 (고순도시료)

부식생성물,

바이오필름

슬러리, 접착제, 페인트 등 화학제품 측정

선박평형수

(Ballast)

고농도 공정수 (펄프, 제지, 슬러리)

본사 및 연구소: 서울시 구로구 디지털로 33길 12 (우림이비지센터 2차 501~ 505호) 공 장: 서울시 구로구 디지털로 33길 12 (우림이비지센터 2차 601~ 603호) 전화: 02-890-3591 | 팩스: 02-890-3590 | E-mail: dongmoonent@naver.com

